Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller
Abstract
:Featured Application
Abstract
1. Introduction
2. Related Works
2.1. Grey Wolf Optimizer
2.2. Gaussian Mutation
2.3. Cauchy Mutation
3. Modified Grey Wolf Optimizer
Algorithm 1 The pseudo code of M-GWO—Modified Based Grey Wolf Optimizer |
) |
2: Calculate the fitness of each search agent |
is the best search agent |
is the second search agent |
is the third search agent |
6: number of iterations) |
7: For each search agent |
8: |
by Equation (14) |
10: else |
by Equation (15) |
12: end If |
by Equation (7) |
by Equation (8) |
by Equation (17) |
16: end For |
17: |
18: |
19: end While |
20: |
4. Experimental Evaluation and Results
4.1. The Test Results of Benchmark Function
4.2. Application of M-GWO to PI Controller Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (1)
- Bent Cigar Function
- (2)
- Sum of Different Power Function
- (3)
- Zakharov Function
- (4)
- Rosenbrock’s Function
- (5)
- Rastrigin’s Function
- (6)
- Expanded Schaffer’s F6 Function
- (7)
- Lunacek bi-Rastrgin Function, , for ,
- (8)
- Non-continuous Rotated Rastrigin’s Function, for ,
- (9)
- Levy Function
- (10)
- Modified Schwefel’s Functionand,
- (11)
- High Conditioned Elliptic Function
- (12)
- Discuss Function
- (13)
- Ackley’s Function
- (14)
- Weierstrass Function
- (15)
- Griewank’s Function
- (16)
- Katsuura Function
- (17)
- HappyCat Function
- (18)
- HGBat Function
- (19)
- Expanded Griewank’s plus Rosenbrock’s Function
- (20)
- Schaffer’s F7 Function
- Unimodal Functions
- B.
- Hybrid Functions
- C.
- Composite Functions
Appendix B
Function | Dim | Index | M-GWO | IGWO | GWO | WOA | DBO | HHO |
---|---|---|---|---|---|---|---|---|
F1 | 30 | Min | 1.07 × 102 | 1.18 × 102 | 5.19 × 109 | 2.06 × 102 | 8.21 × 1010 | 1.29 × 108 |
Mean | 4.41 × 103 | 9.34 × 103 | 2.87 × 1010 | 1.12 × 1010 | 2.28 × 1011 | 2.58 × 108 | ||
SD | 6.16 × 103 | 8.32 × 103 | 2.38 × 1010 | 1.97 × 1010 | 3.15 × 1010 | 5.42 × 107 | ||
50 | Min | 2.69 × 102 | 3.21 × 104 | 1.51 × 106 | 4.17 × 109 | 2.96 × 1010 | 1.22 × 108 | |
Mean | 3.67 × 103 | 8.43 × 105 | 4.04 × 109 | 1.15 × 1010 | 4.21 × 1010 | 1.93 × 108 | ||
SD | 3.02 × 103 | 1.01 × 106 | 4.45 × 109 | 5.19 × 109 | 3.96 × 109 | 4.61 × 107 | ||
F3 | 30 | Min | 1.99 × 105 | 2.47 × 105 | 3.35 × 105 | 2.46 × 105 | 2.28 × 105 | 2.58 × 105 |
Mean | 2.96 × 105 | 3.84 × 105 | 5.02 × 105 | 3.84 × 105 | 4.02 × 105 | 3.62 × 105 | ||
SD | 5.38 × 103 | 7.68 × 103 | 1.07 × 105 | 5.39 × 103 | 2.01 × 105 | 7.46 × 103 | ||
50 | Min | 7.22 × 104 | 8.23 × 104 | 2.42 × 105 | 1.72 × 105 | 1.02 × 105 | 1.01 × 105 | |
Mean | 1.28 × 105 | 1.38 × 105 | 1.59 × 105 | 1.36 × 105 | 1.51 × 105 | 1.34 × 105 | ||
SD | 2.21 × 104 | 3.75 × 104 | 5.02 × 104 | 1.69 × 104 | 2.85 × 104 | 2.01 × 104 |
Function | Dim | Index | M-GWO | IGWO | GWO | WOA | DBO | HHO |
---|---|---|---|---|---|---|---|---|
F4 | 30 | Min | 4.04 × 102 | 4.75 × 102 | 5.06 × 102 | 4.71 × 102 | 8.21 × 102 | 4.95 × 102 |
Mean | 4.90 × 102 | 6.00 × 102 | 6.72 × 102 | 4.98 × 102 | 1.26 × 103 | 5.44 × 102 | ||
SD | 3.45 × 101 | 2.24 × 102 | 3.60 × 102 | 2.80 × 101 | 3.92 × 102 | 2.79 × 101 | ||
50 | Min | 4.34 × 102 | 4.59 × 102 | 6.08 × 102 | 4.81 × 102 | 1.05 × 103 | 6.36 × 102 | |
Mean | 5.50 × 102 | 1.06 × 103 | 1.36 × 103 | 5.63 × 102 | 1.62 × 103 | 7.63 × 102 | ||
SD | 6.97 × 101 | 6.49 × 102 | 3.91 × 102 | 7.58 × 101 | 1.16 × 103 | 7.51 × 101 | ||
F5 | 30 | Min | 5.62 × 102 | 5.71 × 102 | 6.21 × 102 | 6.29 × 102 | 6.82 × 102 | 6.42 × 102 |
Mean | 6.16 × 102 | 6.26 × 102 | 7.23 × 102 | 7.37 × 102 | 6.99 × 102 | 7.59 × 102 | ||
SD | 4.19 × 101 | 4.19 × 101 | 5.62 × 101 | 5.12 × 101 | 4.23 × 101 | 4.17 × 101 | ||
50 | Min | 6.32 × 102 | 6.76 × 102 | 7.58 × 102 | 8.19 × 102 | 8.22 × 102 | 8.67 × 102 | |
Mean | 7.45 × 102 | 7.62 × 102 | 8.49 × 102 | 8.76 × 102 | 1.17 × 103 | 9.17 × 102 | ||
SD | 3.66 × 101 | 4.89 × 101 | 3.12 × 101 | 2.87 × 101 | 4.49 × 101 | 2.86 × 101 | ||
F6 | 30 | Min | 6.00 × 102 | 6.03 × 102 | 6.16 × 102 | 6.29 × 102 | 6.25 × 102 | 6.49 × 102 |
Mean | 6.10 × 102 | 6.12 × 102 | 6.41 × 102 | 6.48 × 102 | 6.36 × 100 | 6.63 × 102 | ||
SD | 4.25 × 100 | 8.45 × 100 | 1.44 × 101 | 1.05 × 101 | 5.29 × 100 | 5.67 × 100 | ||
50 | Min | 6.10 × 102 | 6.13 × 102 | 6.30 × 102 | 6.47 × 102 | 6.52 × 102 | 6.68 × 102 | |
Mean | 6.22 × 102 | 6.31 × 102 | 6.55 × 102 | 6.61 × 102 | 6.72 × 102 | 6.78 × 102 | ||
SD | 5.31 × 100 | 1.19 × 101 | 8.97 × 100 | 7.61 × 100 | 8.81 × 100 | 5.07 × 100 | ||
F7 | 30 | Min | 7.87 × 102 | 8.17 × 102 | 8.57 × 102 | 9.91 × 102 | 1.12 × 103 | 1.13 × 103 |
Mean | 8.42 × 102 | 8.95 × 102 | 1.05 × 103 | 1.21 × 103 | 1.22 × 103 | 1.31 × 103 | ||
SD | 3.45 × 101 | 5.12 × 101 | 1.29 × 102 | 9.66 × 101 | 5.02 × 101 | 6.73 × 101 | ||
50 | Min | 8.79 × 102 | 9.38 × 102 | 1.16 × 103 | 1.38 × 103 | 1.22 × 103 | 1.64 × 103 | |
Mean | 1.04 × 103 | 1.10 × 103 | 1.52 × 103 | 1.72 × 103 | 1.66 × 103 | 1.86 × 103 | ||
SD | 1.02 × 102 | 6.98 × 101 | 2.03 × 102 | 1.01 × 102 | 4.49 × 101 | 1.03 × 102 | ||
F8 | 30 | Min | 8.55 × 102 | 8.74 × 102 | 8.82 × 102 | 9.19 × 102 | 1.01 × 103 | 9.07 × 102 |
Mean | 9.02 × 102 | 9.13 × 102 | 9.57 × 102 | 9.79 × 102 | 1.06 × 103 | 9.82 × 102 | ||
SD | 3.37 × 101 | 2.46 × 101 | 3.32 × 101 | 3.28 × 101 | 2.33 × 101 | 3.06 × 101 | ||
50 | Min | 9.38 × 102 | 1.04 × 103 | 1.14 × 103 | 9.61 × 102 | 1.35 × 103 | 1.15 × 103 | |
Mean | 1.04 × 103 | 1.18 × 103 | 1.19 × 103 | 1.05 × 103 | 1.49 × 103 | 1.21 × 103 | ||
SD | 6.40 × 101 | 4.34 × 101 | 2.41 × 101 | 3.64 × 101 | 4.31 × 101 | 3.29 × 101 | ||
F9 | 30 | Min | 9.25 × 102 | 1.12 × 103 | 2.41 × 103 | 3.03 × 103 | 3.32 × 103 | 5.62 × 103 |
Mean | 2.37 × 103 | 2.56 × 103 | 4.95 × 103 | 5.14 × 104 | 6.69 × 103 | 8.34 × 103 | ||
SD | 9.08 × 102 | 2.04 × 103 | 8.26 × 102 | 4.90 × 102 | 4.15 × 103 | 9.37 × 102 | ||
50 | Min | 2.71 × 103 | 1.18 × 104 | 4.33 × 103 | 1.13 × 104 | 1.08 × 104 | 2.01 × 104 | |
Mean | 9.84 × 103 | 1.39 × 104 | 7.62 × 103 | 1.31 × 104 | 2.88 × 104 | 2.83 × 104 | ||
SD | 4.97 × 103 | 4.16 × 103 | 1.54 × 104 | 8.26 × 102 | 4.53 × 103 | 3.35 × 103 | ||
F10 | 30 | Min | 2.84 × 103 | 3.26 × 103 | 3.59 × 103 | 3.82 × 103 | 5.22 × 103 | 4.60 × 103 |
Mean | 4.51 × 103 | 4.86 × 103 | 4.98 × 103 | 5.37 × 103 | 6.61 × 103 | 5.99 × 103 | ||
SD | 7.98 × 102 | 1.30 × 103 | 5.10 × 102 | 6.68 × 102 | 4.71 × 102 | 7.60 × 102 | ||
50 | Min | 4.93 × 103 | 6.09 × 103 | 6.59 × 103 | 6.64 × 103 | 1.05 × 104 | 7.40 × 103 | |
Mean | 6.97 × 103 | 7.89 × 103 | 7.96 × 103 | 8.83 × 103 | 1.46 × 104 | 9.78 × 103 | ||
SD | 1.00 × 103 | 1.57 × 103 | 9.17 × 102 | 9.02 × 102 | 6.92 × 102 | 1.31 × 103 |
Function | Dim | Index | M-GWO | IGWO | GWO | WOA | DBO | HHO |
---|---|---|---|---|---|---|---|---|
F11 | 30 | Min | 1.14 × 103 | 1.17 × 103 | 1.36 × 103 | 1.21 × 103 | 2.15 × 103 | 1.21 × 103 |
Mean | 1.27 × 103 | 1.34 × 103 | 2.15 × 103 | 1.33 × 103 | 2.28 × 103 | 1.29 × 103 | ||
SD | 7.11 × 101 | 8.19 × 101 | 9.27 × 102 | 8.20 × 101 | 2.47 × 102 | 5.21 × 101 | ||
50 | Min | 1.30 × 103 | 1.26 × 103 | 2.05 × 103 | 1.22 × 103 | 2.15 × 103 | 1.41 × 103 | |
Mean | 1.47 × 103 | 1.49 × 103 | 5.88 × 103 | 1.36 × 103 | 4.55 × 103 | 1.69 × 103 | ||
SD | 8.20 × 101 | 2.86 × 102 | 1.87 × 103 | 7.35 × 101 | 3.52 × 103 | 1.07 × 102 | ||
F12 | 30 | Min | 6.79 × 104 | 4.16 × 104 | 1.67 × 105 | 6.79 × 104 | 6.18 × 107 | 4.78 × 106 |
Mean | 4.93 × 105 | 1.29 × 106 | 1.07 × 108 | 4.93 × 105 | 3.11 × 108 | 2.40 × 107 | ||
SD | 4.61 × 105 | 1.07 × 106 | 4.42 × 108 | 4.61 × 105 | 4.18 × 107 | 1.85 × 107 | ||
50 | Min | 1.46 × 106 | 5.32 × 106 | 7.42 × 106 | 3.96 × 107 | 6.85 × 107 | 4.71 × 107 | |
Mean | 5.45 × 106 | 1.66 × 107 | 1.72 × 109 | 1.43 × 109 | 2.28 × 108 | 1.75 × 108 | ||
SD | 2.88 × 106 | 1.19 × 107 | 2.61 × 109 | 1.91 × 109 | 5.29 × 107 | 1.09 × 108 | ||
F13 | 30 | Min | 3.07 × 103 | 5.89 × 103 | 1.92 × 103 | 2.36 × 107 | 3.32 × 106 | 2.64 × 105 |
Mean | 2.29 × 104 | 3.68 × 104 | 3.83 × 107 | 1.50 × 107 | 8.13 × 106 | 5.36 × 105 | ||
SD | 2.53 × 104 | 2.57 × 104 | 1.93 × 108 | 3.68 × 107 | 4.52 × 106 | 1.79 × 105 | ||
50 | Min | 8.62 × 103 | 1.44 × 104 | 4.61 × 104 | 8.17 × 105 | 3.32 × 106 | 2.31 × 106 | |
Mean | 2.98 × 104 | 7.10 × 104 | 1.48 × 108 | 5.15 × 108 | 4.81 × 106 | 5.42 × 106 | ||
SD | 1.76 × 104 | 4.21 × 104 | 1.32 × 108 | 9.07 × 108 | 2.29 × 106 | 3.58 × 106 | ||
F14 | 30 | Min | 3.53 × 104 | 3.64 × 103 | 6.39 × 103 | 9.77 × 103 | 2.45 × 105 | 1.05 × 104 |
Mean | 2.88 × 103 | 5.67 × 104 | 6.95 × 104 | 5.05 × 105 | 1.62 × 106 | 5.67 × 105 | ||
SD | 3.16 × 104 | 6.43 × 104 | 5.17 × 104 | 6.20 × 105 | 1.39 × 106 | 8.48 × 105 | ||
50 | Min | 2.36 × 104 | 6.32 × 104 | 4.07 × 104 | 2.13 × 105 | 2.41 × 106 | 1.39 × 105 | |
Mean | 1.69 × 105 | 3.77 × 105 | 1.26 × 106 | 1.33 × 106 | 7.19 × 106 | 2.45 × 106 | ||
SD | 1.09 × 105 | 2.99 × 105 | 2.62 × 106 | 1.51 × 106 | 3.96 × 106 | 1.99 × 106 | ||
F15 | 30 | Min | 1.95 × 103 | 2.03 × 103 | 2.24 × 103 | 2.01 × 104 | 2.07 × 106 | 3.30 × 104 |
Mean | 1.04 × 104 | 1.40 × 104 | 1.46 × 104 | 2.41 × 106 | 7.37 × 106 | 8.71 × 104 | ||
SD | 1.33 × 104 | 1.39 × 104 | 1.43 × 104 | 6.36 × 106 | 5.53 × 106 | 4.82 × 104 | ||
50 | Min | 2.36 × 104 | 6.32 × 104 | 4.07 × 104 | 2.13 × 105 | 9.85 × 106 | 1.39 × 105 | |
Mean | 1.69 × 105 | 3.77 × 105 | 1.26 × 106 | 1.33 × 106 | 1.93 × 107 | 2.45 × 106 | ||
SD | 1.09 × 105 | 2.99 × 105 | 2.62 × 106 | 1.51 × 106 | 9.96 × 106 | 1.99 × 106 | ||
F16 | 30 | Min | 1.76 × 103 | 2.15 × 103 | 2.36 × 103 | 2.34 × 103 | 2.58 × 103 | 2.38 × 103 |
Mean | 2.49 × 103 | 2.63 × 103 | 2.86 × 103 | 2.98 × 103 | 3.64 × 103 | 3.51 × 103 | ||
SD | 3.22 × 102 | 3.09 × 102 | 3.86 × 102 | 3.71 × 102 | 2.69 × 102 | 4.93 × 102 | ||
50 | Min | 2.63 × 103 | 4.28 × 103 | 4.09 × 104 | 1.62 × 108 | 3.61 × 105 | 3.21 × 103 | |
Mean | 1.59 × 104 | 3.18 × 104 | 1.43 × 107 | 6.98 × 108 | 7.11 × 105 | 2.19 × 104 | ||
SD | 1.11 × 104 | 2.26 × 104 | 1.85 × 107 | 2.19 × 108 | 3.42 × 105 | 1.91 × 104 | ||
F17 | 30 | Min | 1.81 × 103 | 1.89 × 103 | 2.06 × 103 | 2.10 × 103 | 2.21 × 103 | 2.05 × 103 |
Mean | 2.04 × 103 | 2.23 × 103 | 2.42 × 103 | 2.29 × 103 | 2.42 × 103 | 2.62 × 103 | ||
SD | 1.67 × 102 | 1.98 × 102 | 2.10 × 102 | 2.57 × 102 | 2.01 × 102 | 2.92 × 102 | ||
50 | Min | 2.37 × 103 | 2.39 × 103 | 2.69 × 103 | 2.81 × 103 | 3.52 × 103 | 2.73 × 103 | |
Mean | 2.85 × 103 | 3.18 × 103 | 3.26 × 103 | 3.61 × 103 | 4.71 × 103 | 3.79 × 103 | ||
SD | 2.77 × 102 | 3.32 × 102 | 3.89 × 102 | 3.85 × 102 | 4.13 × 102 | 5.01 × 102 | ||
F18 | 30 | Min | 2.12 × 104 | 6.77 × 104 | 9.68 × 104 | 9.78 × 104 | 3.28 × 105 | 1.23 × 105 |
Mean | 3.01 × 105 | 5.91 × 105 | 7.13 × 105 | 2.11 × 106 | 1.02 × 106 | 1.64 × 106 | ||
SD | 2.92 × 105 | 4.69 × 105 | 1.39 × 106 | 4.81 × 106 | 7.79 × 105 | 2.29 × 106 | ||
50 | Min | 2.52 × 105 | 6.13 × 105 | 5.28 × 105 | 1.03 × 106 | 2.23 × 107 | 1.12 × 106 | |
Mean | 1.53 × 106 | 2.79 × 106 | 3.55 × 106 | 1.21 × 107 | 4.51 × 107 | 4.94 × 106 | ||
SD | 1.31 × 106 | 2.11 × 106 | 2.87 × 106 | 1.67 × 107 | 2.36 × 107 | 4.09 × 106 | ||
F19 | 30 | Min | 2.29 × 103 | 2.09 × 103 | 1.63 × 104 | 2.06 × 103 | 3.32 × 104 | 7.39 × 104 |
Mean | 9.51 × 103 | 2.19 × 104 | 3.16 × 106 | 1.34 × 104 | 6.21 × 104 | 8.47 × 105 | ||
SD | 1.13 × 104 | 3.94 × 104 | 8.83 × 106 | 1.36 × 104 | 4.52 × 104 | 7.52 × 105 | ||
50 | Min | 2.34 × 103 | 4.51 × 103 | 3.35 × 104 | 3.73 × 103 | 2.19 × 105 | 2.25 × 105 | |
Mean | 1.86 × 104 | 3.56 × 105 | 1.38 × 107 | 2.53 × 104 | 5.31 × 105 | 1.54 × 106 | ||
SD | 1.64 × 104 | 1.66 × 106 | 2.82 × 107 | 1.27 × 104 | 2.08 × 105 | 1.07 × 106 | ||
F20 | 30 | Min | 2.13 × 103 | 2.25 × 103 | 2.27 × 103 | 2.29 × 103 | 2.52 × 103 | 2.41 × 103 |
Mean | 2.43 × 103 | 4.46 × 103 | 2.67 × 103 | 2.75 × 103 | 2.71 × 103 | 2.72 × 103 | ||
SD | 2.10 × 102 | 1.81 × 102 | 2.21 × 102 | 2.40 × 102 | 1.36 × 102 | 2.07 × 102 | ||
50 | Min | 2.42 × 103 | 2.56 × 103 | 2.76 × 103 | 3.02 × 103 | 3.04 × 103 | 3.03 × 103 | |
Mean | 2.91 × 103 | 3.01 × 103 | 3.56 × 103 | 3.57 × 103 | 3.41 × 103 | 3.55 × 103 | ||
SD | 2.83 × 102 | 3.18 × 102 | 4.12 × 102 | 2.33 × 102 | 2.37 × 102 | 2.77 × 102 |
Function | Dim | Index | M-GWO | IGWO | GWO | WOA | DBO | HHO |
---|---|---|---|---|---|---|---|---|
F21 | 30 | Min | 2.35 × 103 | 2.37 × 103 | 2.41 × 103 | 2.41 × 101 | 2.42 × 103 | 2.23 × 103 |
Mean | 2.40 × 103 | 2.43 × 103 | 2.47 × 103 | 2.51 × 103 | 2.48 × 103 | 2.57 × 103 | ||
SD | 2.88 × 101 | 3.23 × 101 | 3.81 × 101 | 6.71 × 101 | 2.92 × 101 | 8.64 × 101 | ||
50 | Min | 2.47 × 103 | 2.53 × 103 | 2.46 × 103 | 2.57 × 103 | 2.71 × 103 | 2.73 × 103 | |
Mean | 2.54 × 103 | 2.64 × 101 | 2.57 × 103 | 2.77 × 103 | 2.82 × 103 | 2.87 × 103 | ||
SD | 5.61 × 101 | 6.02 × 101 | 7.51 × 101 | 1.08 × 102 | 3.41 × 101 | 7.49 × 101 | ||
F22 | 30 | Min | 2.30 × 103 | 2.30 × 103 | 2.39 × 103 | 2.30 × 103 | 3.28 × 103 | 2.33 × 103 |
Mean | 3.83 × 103 | 4.40 × 103 | 4.56 × 103 | 5.55 × 103 | 4.12 × 103 | 6.76 × 103 | ||
SD | 2.08 × 103 | 1.89 × 103 | 1.84 × 103 | 2.22 × 103 | 2.78 × 102 | 1.77 × 103 | ||
50 | Min | 7.53 × 103 | 8.53 × 103 | 7.45 × 103 | 8.18 × 103 | 1.03 × 104 | 9.96 × 103 | |
Mean | 9.24 × 103 | 9.76 × 103 | 9.81 × 103 | 1.02 × 104 | 1.51 × 104 | 1.19 × 104 | ||
SD | 1.05 × 103 | 8.78 × 102 | 2.05 × 103 | 9.64 × 102 | 6.33 × 102 | 1.01 × 103 | ||
F23 | 30 | Min | 2.71 × 103 | 2.77 × 103 | 2.78 × 103 | 2.78 × 103 | 2.87 × 103 | 3.08 × 103 |
Mean | 2.78 × 103 | 2.86 × 103 | 2.93 × 103 | 2.92 × 103 | 2.96 × 103 | 3.21 × 103 | ||
SD | 4.87 × 101 | 6.20 × 101 | 8.75 × 101 | 9.08 × 101 | 2.63 × 101 | 1.21 × 102 | ||
50 | Min | 2.94 × 103 | 2.92 × 103 | 2.96 × 103 | 3.08 × 103 | 3.32 × 103 | 3.51 × 103 | |
Mean | 3.03 × 103 | 3.25 × 103 | 3.31 × 103 | 3.38 × 103 | 3.40 × 103 | 3.79 × 103 | ||
SD | 8.21 × 101 | 1.52 × 102 | 1.49 × 102 | 1.62 × 102 | 3.22 × 101 | 1.52 × 102 | ||
F24 | 30 | Min | 2.89 × 103 | 2.89 × 103 | 2.97 × 103 | 2.94 × 103 | 3.09 × 103 | 3.09 × 103 |
Mean | 2.93 × 103 | 3.03 × 103 | 3.09 × 103 | 3.07 × 103 | 3.15 × 103 | 3.42 × 103 | ||
SD | 6.67 × 101 | 6.97 × 101 | 9.56 × 101 | 8.28 × 101 | 2.22 × 101 | 1.56 × 102 | ||
50 | Min | 3.06 × 103 | 3.20 × 103 | 3.27 × 103 | 3.34 × 103 | 3.46 × 103 | 3.75 × 103 | |
Mean | 3.22 × 103 | 3.36 × 103 | 3.56 × 103 | 3.54 × 103 | 3.59 × 103 | 4.27 × 103 | ||
SD | 9.50 × 101 | 1.25 × 102 | 1.66 × 102 | 1.10 × 102 | 2.31 × 101 | 2.15 × 102 | ||
F25 | 30 | Min | 2.88 × 103 | 2.89 × 103 | 2.95 × 103 | 2.88 × 103 | 3.01 × 103 | 2.89 × 103 |
Mean | 2.89 × 103 | 2.91 × 103 | 3.04 × 103 | 2.90 × 103 | 3.23 × 103 | 2.93 × 103 | ||
SD | 1.26 × 101 | 4.57 × 101 | 8.55 × 101 | 1.61 × 101 | 1.87 × 102 | 1.91 × 101 | ||
50 | Min | 3.00 × 103 | 3.01 × 103 | 3.31 × 103 | 3.03 × 103 | 3.22 × 103 | 3.14 × 103 | |
Mean | 3.04 × 103 | 3.08 × 103 | 3.83 × 103 | 3.14 × 103 | 3.61 × 103 | 3.25 × 103 | ||
SD | 2.11 × 101 | 3.52 × 101 | 3.64 × 102 | 9.22 × 101 | 1.26 × 102 | 8.79 × 101 | ||
F26 | 30 | Min | 2.90 × 103 | 3.28 × 103 | 3.65 × 103 | 2.80 × 103 | 3.12 × 103 | 3.20 × 103 |
Mean | 5.57 × 103 | 4.84 × 103 | 4.91 × 103 | 5.97 × 103 | 3.34 × 103 | 7.30 × 103 | ||
SD | 1.23 × 103 | 1.05 × 103 | 4.81 × 102 | 1.35 × 103 | 1.41 × 102 | 1.47 × 103 | ||
50 | Min | 2.92 × 103 | 5.64 × 103 | 3.53 × 103 | 2.90 × 103 | 3.15 × 103 | 4.05 × 103 | |
Mean | 5.76 × 103 | 6.99 × 103 | 7.46 × 103 | 6.93 × 103 | 5.28 × 103 | 1.08 × 104 | ||
SD | 3.61 × 103 | 7.46 × 102 | 1.45 × 103 | 3.72 × 103 | 3.75 × 103 | 1.93 × 103 | ||
F27 | 30 | Min | 3.20 × 103 | 3.20 × 103 | 3.21 × 103 | 3.22 × 103 | 2.26 × 103 | 3.26 × 103 |
Mean | 3.25 × 103 | 3.29 × 103 | 3.26 × 103 | 3.26 × 103 | 3.31 × 103 | 3.53 × 103 | ||
SD | 2.77 × 101 | 5.08 × 102 | 3.18 × 101 | 3.19 × 101 | 4.42 × 101 | 1.68 × 102 | ||
50 | Min | 3.34 × 103 | 3.36 × 103 | 3.44 × 103 | 3.59 × 103 | 3.46 × 103 | 3.80 × 103 | |
Mean | 3.49 × 103 | 3.70 × 103 | 3.65 × 103 | 3.75 × 103 | 3.71 × 103 | 4.52 × 103 | ||
SD | 1.33 × 102 | 2.93 × 102 | 9.89 × 101 | 1.02 × 102 | 2.22 × 102 | 4.03 × 102 | ||
F28 | 30 | Min | 3.02 × 103 | 3.21 × 103 | 3.32 × 103 | 3.20 × 103 | 3.20 × 103 | 3.27 × 103 |
Mean | 3.10 × 103 | 3.29 × 103 | 3.45 × 103 | 3.24 × 103 | 3.31 × 103 | 3.33 × 103 | ||
SD | 2.77 × 101 | 1.50 × 102 | 7.63 × 101 | 2.79 × 101 | 3.36 × 102 | 4.71 × 101 | ||
50 | Min | 3.30 × 103 | 3.33 × 103 | 3.73 × 103 | 3.27 × 103 | 3.44 × 103 | 3.53 × 103 | |
Mean | 3.34 × 103 | 3.92 × 103 | 4.45 × 103 | 3.32 × 103 | 3.71 × 103 | 3.76 × 103 | ||
SD | 3.65 × 101 | 6.94 × 102 | 3.83 × 102 | 2.28 × 101 | 5.27 × 102 | 1.29 × 102 | ||
F29 | 30 | Min | 3.45 × 103 | 3.86 × 103 | 4.45 × 103 | 3.69 × 103 | 3.46 × 103 | 3.66 × 103 |
Mean | 3.78 × 103 | 3.89 × 103 | 5.02 × 103 | 4.08 × 103 | 3.81 × 103 | 4.68 × 103 | ||
SD | 1.01 × 102 | 2.08 × 102 | 2.60 × 102 | 2.61 × 102 | 1.25 × 102 | 4.59 × 102 | ||
50 | Min | 3.94 × 103 | 4.28 × 103 | 4.17 × 103 | 4.34 × 103 | 4.21 × 103 | 4.82 × 103 | |
Mean | 4.69 × 103 | 4.75 × 103 | 4.94 × 103 | 5.14 × 103 | 4.98 × 103 | 6.20 × 103 | ||
SD | 4.54 × 102 | 2.88 × 102 | 4.05 × 102 | 4.62 × 102 | 4.69 × 102 | 7.31 × 102 | ||
F30 | 30 | Min | 5.30 × 103 | 6.41 × 103 | 1.07 × 106 | 5.42 × 103 | 3.28 × 107 | 5.68 × 105 |
Mean | 1.73 × 104 | 1.79 × 105 | 1.10 × 107 | 1.96 × 104 | 8.27 × 107 | 4.33 × 106 | ||
SD | 1.25 × 104 | 5.22 × 105 | 8.19 × 106 | 1.99 × 104 | 4.22 × 107 | 2.71 × 106 | ||
50 | Min | 9.48 × 105 | 1.25 × 106 | 8.13 × 105 | 4.85 × 107 | 4.29 × 108 | 3.12 × 107 | |
Mean | 1.86 × 106 | 3.53 × 106 | 4.71 × 106 | 1.45 × 108 | 1.05 × 109 | 5.73 × 107 | ||
SD | 7.16 × 105 | 2.17 × 106 | 7.35 × 106 | 9.78 × 107 | 3.39 × 108 | 1.71 × 107 |
Function | Dim | M-GWO | IGWO | GWO | WOA | DBO | HHO |
---|---|---|---|---|---|---|---|
F1 | 30 | 1.207 s | 1.337 s | 1.115 s | 1.357 s | 1.088 s | 1.447 s |
50 | 1.886 s | 2.016 s | 1.769 s | 2.224 s | 1.629 s | 2.301 s | |
F3 | 30 | 1.124 s | 1.284 s | 1.054 s | 1.292 s | 1.044 s | 1.331 s |
50 | 1.771 s | 1.904 s | 1.692 s | 1.885 s | 1.706 s | 1.928 s | |
F4 | 30 | 1.224 s | 1.314 s | 1.088 s | 1.295 s | 1.118 s | 1.323 s |
50 | 1.639 s | 1.715 s | 1.407 s | 1.699 s | 1.517 s | 1.903 s | |
F5 | 30 | 1.391 s | 1.507 s | 1.216 s | 1.517 s | 1.336 s | 1.492 s |
50 | 1.873 s | 2.224 s | 1.743 s | 2.007 s | 1.721 s | 2.109 s | |
F6 | 30 | 1.287 s | 1.134 s | 1.478 s | 1.056 s | 1.392 s | 1.219 s |
50 | 1.532 s | 1.671 s | 1.557 s | 1.645 s | 1.592 s | 1.613 s | |
F7 | 30 | 1.167 s | 1.423 s | 1.098 s | 1.356 s | 1.274 s | 1.489 s |
50 | 1.507 s | 1.629 s | 1.548 s | 1.663 s | 1.581 s | 1.694 s | |
F8 | 30 | 1.321 s | 1.045 s | 1.487 s | 1.132 s | 1.269 s | 1.403 s |
50 | 1.523 s | 1.654 s | 1.576 s | 1.689 s | 1.512 s | 1.637 s | |
F9 | 30 | 1.153 s | 1.437 s | 1.082 s | 1.364 s | 1.298 s | 1.426 s |
50 | 1.545 s | 1.612 s | 1.587 s | 1.673 s | 1.539 s | 1.691 s | |
F10 | 30 | 1.283 s | 1.147 s | 1.462 s | 1.095 s | 1.371 s | 1.524 s |
50 | 1.518 s | 1.642 s | 1.569 s | 1.685 s | 1.533 s | 1.627 s | |
F11 | 30 | 1.218 s | 1.473 s | 1.056 s | 1.392 s | 1.127 s | 1.489 s |
50 | 1.524 s | 1.678 s | 1.732 s | 1.596 s | 1.614 s | 1.765 s | |
F12 | 30 | 1.263 s | 1.417 s | 1.089 s | 1.352 s | 1.194 s | 1.476 s |
50 | 1.537 s | 1.792 s | 1.645 s | 1.583 s | 1.721 s | 1.668 s | |
F13 | 30 | 1.237 s | 1.498 s | 1.073 s | 1.326 s | 1.185 s | 1.459 s |
50 | 1.576 s | 1.749 s | 1.512 s | 1.637 s | 1.784 s | 1.695 s | |
F14 | 30 | 1.254 s | 1.437 s | 1.092 s | 1.368 s | 1.213 s | 1.481 s |
50 | 1.642 s | 1.537 s | 1.789 s | 1.594 s | 1.673 s | 1.721 s | |
F15 | 30 | 1.123 s | 1.287 s | 1.056 s | 1.342 s | 1.098 s | 1.312 s |
50 | 1.732 s | 1.548 s | 1.695 s | 1.517 s | 1.764 s | 1.623 s | |
F16 | 30 | 1.134 s | 1.279 s | 1.067 s | 1.328 s | 1.115 s | 1.349 s |
50 | 1.756 s | 1.589 s | 1.647 s | 1.792 s | 1.534 s | 1.678 s | |
F17 | 30 | 1.142 s | 1.263 s | 1.089 s | 1.317 s | 1.128 s | 1.336 s |
50 | 1.637 s | 1.482 s | 1.594 s | 1.671 s | 1.468 s | 1.523 s | |
F18 | 30 | 1.287 s | 1.123 s | 1.349 s | 1.078 s | 1.312 s | 1.156 s |
50 | 1.655 s | 1.497 s | 1.572 s | 1.689 s | 1.473 s | 1.536 s | |
F19 | 30 | 1.267 s | 1.122 s | 1.349 s | 1.078 s | 1.312 s | 1.156 s |
50 | 1.519 s | 1.628 s | 1.453 s | 1.674 s | 1.581 s | 1.692 s | |
F20 | 30 | 1.214 s | 1.098 s | 1.316 s | 1.167 s | 1.289 s | 1.144 s |
50 | 1.467 s | 1.643 s | 1.529 s | 1.685 s | 1.491 s | 1.576 s | |
F21 | 30 | 1.317 s | 1.089 s | 1.254 s | 1.432 s | 1.173 s | 1.298 s |
50 | 1.542 s | 1.478 s | 1.613 s | 1.597 s | 1.459 s | 1.634 s | |
F22 | 30 | 1.285 s | 1.117 s | 1.341 s | 0.956 s | 1.312 s | 1.122 s |
50 | 1.531 s | 1.679 s | 1.484 s | 1.592 s | 1.656 s | 1.463 s | |
F23 | 30 | 0.956 s | 1.298 s | 1.056 s | 1.312 s | 1.091 s | 1.005 s |
50 | 1.507 s | 1.623 s | 1.498 s | 1.645 s | 1.576 s | 1.472 s | |
F24 | 30 | 1.045 s | 0.987 s | 1.056 s | 1.192 s | 0.941 s | 1.017 s |
50 | 1.324 s | 1.476 s | 1.359 s | 1.412 s | 1.387 s | 1.435 s | |
F25 | 30 | 1.023 s | 1.156 s | 0.978 s | 1.102 s | 1.200 s | 0.945 s |
50 | 1.368 s | 1.492 s | 1.317 s | 1.454 s | 1.343 s | 1.429 s | |
F26 | 30 | 1.087 s | 0.923 s | 1.159 s | 1.046 s | 1.191 s | 0.965 s |
50 | 1.372 s | 1.481 s | 1.334 s | 1.467 s | 1.395 s | 1.443 s | |
F27 | 30 | 1.132 s | 0.976 s | 1.054 s | 1.189 s | 0.997 s | 1.023 s |
50 | 1.356 s | 1.428 s | 1.389 s | 1.473 s | 1.319 s | 1.497 s | |
F28 | 30 | 1.164 s | 0.928 s | 1.073 s | 1.197 s | 0.956 s | 1.032 s |
50 | 1.342 s | 1.416 s | 1.367 s | 1.434 s | 1.391 s | 1.489 s | |
F29 | 30 | 1.112 s | 0.984 s | 1.067 s | 1.143 s | 0.939 s | 1.015 s |
50 | 1.327 s | 1.419 s | 1.378 s | 1.463 s | 1.354 s | 1.445 s | |
F30 | 30 | 0.921 s | 1.058 s | 1.173 s | 0.964 s | 1.136 s | 1.092 s |
50 | 1.336 s | 1.472 s | 1.383 s | 1.429 s | 1.398 s | 1.451 s |
References
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Duan, Y.; Yu, X. A collaboration-based hybrid GWO-SCA optimizer for engineering optimization problems. Expert Syst. Appl. 2023, 213 Pt B, 119017.1–119017.16. [Google Scholar] [CrossRef]
- Uzlu, E. Estimates of greenhouse gas emission in Turkey with grey wolf optimizer algorithm-optimized artificial neural networks. Neural Comput. Appl. 2021, 33, 13567–13585. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Cui, F.; Wang, Y.; Xu, Y.; Zhu, Y. Configuration and Robust Optimization Method of Energy Storage Capacity on the User Side of Power Grid Based on Improved Grey Wolf Algorithm. J. Phys. Conf. Ser. 2023, 2655, 012005. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, D.; Zhou, C.; Sun, G. Improved grey wolf algorithm based on dynamic weight and logistic mapping for safe path planning of UAV low-altitude penetration. J. Supercomput. 2024, 80, 25818–25852. [Google Scholar] [CrossRef]
- Rajesh, B. Landslides Identification Through Conglomerate Grey Wolf Optimization and Whale Optimization Algorithm; BASE University Working Papers; BASE University: Bengaluru, India, 2021. [Google Scholar]
- Wang, Z.; Dai, D.; Zeng, Z.; He, D.; Chan, S. Multi-strategy enhanced Grey Wolf Optimizer for global optimization and real world problems. Clust. Comput. 2024, 27, 10671–10715. [Google Scholar] [CrossRef]
- Jiang, J.H.; Zhao, Z.Y.; Liu, Y.T.; Li, W.H.; Wang, H. DSGWO: An improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms. Knowl.-Based Syst. 2022, 250, 109100. [Google Scholar] [CrossRef]
- Xue, H.; Liu, Z.; Ren, K.; Huang, J.; Meng, L.; Zhang, H. Distribution loss reduction strategy based on improved Grey Wolf algorithm. In Proceedings of the 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Tianjin, China, 14–16 April 2023; pp. 1936–1941. [Google Scholar] [CrossRef]
- Kannan, K.; Yamini, B.; Fernandez, F.M.H.; Priyadarsini, P.U. A novel method for spectrum sensing in cognitive radio networks using fractional GWO-CS optimization. Ad Hoc Netw. 2023, 144, 103135. [Google Scholar] [CrossRef]
- Li, L.; He, Y.; Zhang, H.; Fung, J.C.; Lau, A.K. Enhancing IAQ, thermal comfort, and energy efficiency through an adaptive multi-objective particle swarm optimizer-grey wolf optimization algorithm for smart environmental control. Build. Environ. 2023, 235, 110235. [Google Scholar] [CrossRef]
- Wang, Q.; Yue, C.; Li, X.; Liao, P.; Li, X. Enhancing robustness of monthly streamflow forecasting model using embedded-feature selection algorithm based on improved gray wolf optimizer. J. Hydrol. 2023, 617, 128995. [Google Scholar] [CrossRef]
- Xia, Z. Control of Pivot Steering for Bilateral Independent Electrically Driven Tracked Vehicles Based on GWO-PID. World Electr. Veh. J. 2024, 15, 231. [Google Scholar] [CrossRef]
- Roy, S.P.; Shubham; Singh, A.K.; Mehta, R.K.; Roy, O.P. Application of GWO and TLBO Algorithms for PID Tuning in Hybrid Renewable Energy System. In Computer Vision and Robotics. Algorithms for Intelligent Systems; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Yildirim, Ş.; Çabuk, N.; Bakircioğlu, V. Optimal PID Controller Design For Trajectory Tracking Of A Dodecarotor Uav Based On Grey Wolf Optimizer. Konya J. Eng. Sci. 2023, 11, 10–20. [Google Scholar] [CrossRef]
- Hocaoğlu, G.S.; Çavli, N.; Kılıç, E.; Danayiyen, Y. Nonlinear Convergence Factor Based Grey Wolf Optimization Algorithm and Load Frequency Control. In Proceedings of the 2023 5th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkiye, 14–16 June 2023; pp. 282–287. [Google Scholar] [CrossRef]
- Dey, S.; Banerjee, S.; Dey, J. Implementation of Optimized PID Controllers in Real Time for Magnetic Levitation System. In Computational Intelligence in Machine Learning; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Kommadath, R.; Kotecha, P. Teaching Learning Based Optimization with focused learning and its performance on CEC2017 functions. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 2397–2403. [Google Scholar] [CrossRef]
- Jing, N. IGWO-LSTM based power prediction for wind power generation. In Proceedings of the 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 11–13 October 2023; pp. 1141–1146. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
Algorithms | Parameters Used in the Algorithm |
---|---|
M-GWO | |
IGWO | |
GWO | |
WOA | |
DBO | |
HHO |
Parameter | Meaning of Parameter | Value |
---|---|---|
Inverter amplification actor | 1 | |
Stator q-axis inductance | ||
Stator d-axis inductance | ||
Inverter switching cycle | ||
Stator resistance per phase | ||
Number of poles | 5 | |
Back electromotive force constant | 0.004 V/rpm |
Methods | PI Parameters | |
---|---|---|
M-GWO-PI | 0.317 | 71.6756 |
WOA-PI | 0.216 | 100.4651 |
HHO-PI | 0.3 | 93.2684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, L.; Wu, S.; Lv, Z. Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller. Appl. Sci. 2025, 15, 4530. https://doi.org/10.3390/app15084530
Sheng L, Wu S, Lv Z. Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller. Applied Sciences. 2025; 15(8):4530. https://doi.org/10.3390/app15084530
Chicago/Turabian StyleSheng, Long, Sen Wu, and Zongyu Lv. 2025. "Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller" Applied Sciences 15, no. 8: 4530. https://doi.org/10.3390/app15084530
APA StyleSheng, L., Wu, S., & Lv, Z. (2025). Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller. Applied Sciences, 15(8), 4530. https://doi.org/10.3390/app15084530