Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications
Abstract
:1. Introduction
2. Preparation and Applications of Chitosan-Based Heterogeneous Catalysts
2.1. Chemical Activation and Conversion
2.1.1. Metal Catalysts
Catalyst | Synthesis Reagents a | Reaction Scheme | Yield | Selectivity | Reference |
---|---|---|---|---|---|
Chitosan/Au | HAuCl4 | 70% | ≥99% | [30] | |
Chitosan-Fe3O4-Pd | FeCl3·6H2O, FeCl2·4H2O, PdCl2, ethanol, NaBH4 | >97% | 99% | [5] | |
Chitosan/Pd(0) | Pd(OAc)2, dimethylsulfoxide, hydrazine hydate, diglycidyl ether polyethylene glycol | 98% b | - | [28] | |
Chitosan/Pd(II) | Pd(OAc)2, hexamethylene diisocyanate (HDI) | 98% | - | [31] | |
Chitosan/quaternary ammonium salt | 3-Chloro-2-hydroxypropyl trimethylammonium chloride, isopropanol | >73% | >99% | [19] | |
Chitosan/Ru | RuCl3 | >99% | High | [11] | |
Functionalized chitosan | 1-ethyl-3-methyl imidazolium halides | 96% | >99% | [14] | |
Magnetic dual catalyst | FeCl3·6H2O, FeCl2·4H2O, Cobalt(II) acetylacetonate, quaternary triphenylphosphonium bromide | 85% | 79.6% | [18] | |
Quaternized chitosan | 1-methyl-2-pyrrolidinone, NaI, CH3I | 90% | >99% | [32] |
Palladium Catalysts
Gold Catalyst
Ruthenium Catalyst
2.1.2. Nonmetal Catalysts
Quaternized Chitosan
Other Novel Catalysts
2.2. Photocatalysts
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Mohanasrinivasan, V.; Mishra, M.; Singh, S.; Selvarajan, E.; Suganthi, V.; Devi, C.S. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. Biotech 2014, 4, 167–175. [Google Scholar] [CrossRef]
- Li, N.; Bai, R. Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal. Water Sci. Technol. 2006, 54, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, Z.; Yang, H.; Shi, Z.; Zhou, X.; Li, R. Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions. Appl. Surf. Sci. 2013, 279, 360–366. [Google Scholar] [CrossRef]
- Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res. 2014, 53, 2085–2091. [Google Scholar] [CrossRef]
- Ma, J.; Sahai, Y. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym. 2013, 92, 955–975. [Google Scholar] [CrossRef] [PubMed]
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process. 2013, 1, 16. [Google Scholar] [CrossRef]
- Dekamin, M.G.; Azimoshan, M.; Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 2013, 15, 811–820. [Google Scholar] [CrossRef]
- Sundeesh, N.; Sharma, S.K.; Shukla, R.S. Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J. Mol. Catal. A: Chem. 2010, 321, 77–82. [Google Scholar]
- Toffey, A.; Samaranayake, G.; Frazier, C.E.; Glasser, W.G. Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J. Appl. Polym. Sci. 1996, 60, 75–85. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Ruthenium on chitosan: A recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chem. 2014, 16, 2122. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; She, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem. 2012, 14, 654–660. [Google Scholar] [CrossRef]
- Varma, R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128. [Google Scholar] [CrossRef]
- Brunel, D.; Blanc, A.C.; Galareau, A.; Fajula, F. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals. Catal. Today 2002, 73, 139–152. [Google Scholar] [CrossRef]
- Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 5916–5920. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singhal, N.; Singh, R.K.; Gupta, P.; Singh, R.; Jain, S.L. Dual catalysis with magnetic chitosan: Direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Trans. 2015, 44, 11860–11866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem. 2007, 271, 284–289. [Google Scholar] [CrossRef]
- Lamblin, M.; Nassar-Hardy, L.; Hierso, J.C.; Fouquet, E.; Felpin, F.X. Recyclable heterogeneous palladium catalysts in pure water: Sustainable developments in suzuki, heck, sonogashira and tsuji-trost reactions. Adv. Synth. Catal. 2010, 352, 33–79. [Google Scholar] [CrossRef]
- Baig, R.B.N.; Varma, R.S. Copper on chitosan: A recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chem. 2013, 15, 1839–1843. [Google Scholar] [CrossRef]
- Adlim, M.; Bakar, M.A.; Liew, K.Y.; Ismail, J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol. Catal. A: Chem. 2004, 212, 141–149. [Google Scholar] [CrossRef]
- Peirano, F.; Vincent, T.; Quignard, F.; Robitzer, M.; Guibal, E. Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J. Membr. Sci. 2009, 329, 30–45. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, L.; Liang, C.; Yuan, Z.; Zhang, Y.; Xu, W.; Zhang, J.; Chen, Y. Chitosan modified Fe0 nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water. J. Mater. Chem. 2011, 21, 5877–5880. [Google Scholar] [CrossRef]
- Khoza, P.; Nyokong, T. Photocatalytic behaviour of zinc tetraamino phthalocyanine-silver nanoparticles immobilized on chitosan beads. J. Mole Catals A: Chem. 2015, 399, 25–32. [Google Scholar] [CrossRef]
- Mansur, A.A.P.; Mansur, H.S.; Ramanery, F.P.; Oliveira, L.C.; Souza, P.P. “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Appl. Catal. B: Environ. 2014, 158–159, 269–279. [Google Scholar] [CrossRef]
- Wei, D.; Ye, Y.; Jia, X.; Yuan, C.; Qian, W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr. Res. 2010, 345, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Ma, Z.; Hu, P. Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2014, 2, 13471–13478. [Google Scholar] [CrossRef]
- Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev. 2007, 107, 2563–2591. [Google Scholar] [CrossRef] [PubMed]
- Darensbourg, D.J.; Holtcamp, M.W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev. 1996, 153, 155–174. [Google Scholar] [CrossRef]
- Yi, S.-S.; Lee, D.-H.; Sin, E.; Lee, Y.-S. Chitosan-supported palladium(0) catalyst for microwave-prompted Suzuki cross-coupling reaction in water. Tetrahedron Lett. 2007, 48, 6771–6775. [Google Scholar] [CrossRef]
- Hierso, J.-C.; Beauperin, M.; Meunier, P. Ultra-low catalyst loading as a concept in economical and sustainable modern chemistry: The contribution of ferrocenyl polyphosphane ligands. Eur. J. Inorg. Chem. 2007, 2007, 3767–3780. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Pd immobilized on amine-functionalized magnetite nanoparticles: A novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 2011, 13, 1238–1243. [Google Scholar] [CrossRef]
- Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis—A critical technology overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Martina, K.; Leonhardt, S.E.S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J. Mole Catal A: Chem. 2011, 334, 60–64. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Bai, J. Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohyd. Res. 2009, 344, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Schüßler, S.; Blaubach, N.; Stolle, A.; Cravotto, G.; Ondruschka, B. Application of a cross-linked Pd-chitosan catalyst in liquid-phase-hydrogenation using molecular hydrogen. Appl. Cataly A 2012, 445–446, 231–238. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 2009, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- González-Arellano, C.; Abad, A.; Corma, A.; Garcia, H.; Iglesias, M.; Sanchez, F. Catalysis by gold(I) and gold(III): A parallelism between homo- and heterogeneous catalysts for copper-free sonogashira cross-coupling reactions. Angew. Chem. Int. Ed. 2007, 46, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Primo, A.; Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: Design of hybrid catalyst for carbon-carbon bond formation. Chem. Commun. 2010, 46, 5593–5595. [Google Scholar] [CrossRef] [PubMed]
- Budroni, G.; Corma, A. Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew. Chem. Int. Ed. 2006, 45, 3328–3331. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chen, D.-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Baig, R.B.N.; Varma, R.S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides. Chem. Commun. 2012, 48, 6220–6222. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K.-H.; Lin, Z.; Lv, H.; Zhang, X. Highly efficient tetradentate ruthenium catalyst for ester reduction: Especially for hydrogenation of fatty acid esters. Org. Lett. 2015, 17, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 2012, 4, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Babin, M.; Clement, R.; Gagnon, J.; Fontaine, F.-G. Homogeneous asymmetric transfer hydrogenation of ketones using a ruthenium catalyst anchored on chitosan: Natural chirality at work. New J. Chem. 2012, 36, 1548–1551. [Google Scholar] [CrossRef]
- North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539. [Google Scholar] [CrossRef]
- Fukuoka, S.; Kawanura, M.; Komiya, K.; Tojo, M.; Hachyia, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 2003, 5, 497–507. [Google Scholar] [CrossRef]
- Chazallon, B.; Ziskind, M.; Carpentier, Y.; Focsa, C. CO2 capture using semi-clathrates of quaternary ammonium salt: Structure change induced by CO2 and N2 enclathration. J. Phys. Chem. B 2014, 118, 13440–13452. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.; Lee, Y.; Seo, Y. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts. Environ. Sci. Technol. 2013, 47, 7571–7577. [Google Scholar] [PubMed]
- Xie, H.; Zhang, S.; Li, S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006, 8, 630–633. [Google Scholar] [CrossRef]
- Tharun, J.; Hwang, Y.; Roshan, R.; Ahn, S.; Kathalillattil, A.C.; Park, D.-W. A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with CO2. Cataly Sci. Technol. 2012, 2, 1674–1680. [Google Scholar] [CrossRef]
- Tharun, J.; Kim, D.W.; Roshan, R.; Hwang, Y.; Park, D.-W. Microwave assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides. Cataly Commun. 2013, 31, 62–65. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Zainal, Z.; Hui, L.K.; Hussein, M.Z.; Abdullah, A.H.; Hamadneh, I.R. Characterization of TiO2-Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. J. Hazard. Mater. 2009, 164, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Zubieta, C.E.; Messina, P.V.; Luengo, C.; Dennehy, M.; Pieroni, O.; Schulz, P.P. Reactive dyes remotion by porous TiO2-chitosan materials. J. Hazard. Mater. 2008, 152, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Nawi, M.A.; Jawad, A.H.; Sabar, S.; Ngah, W.S.W. Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination 2011, 280, 288–296. [Google Scholar] [CrossRef]
- Walalawela, N.; Greer, A. Photoactive chitosan: A step toward a green strategy for pollutant degradation. Photochem. Photobiol. 2014, 90, 1216–1218. [Google Scholar] [CrossRef] [PubMed]
- Nawi, M.A.; Sheilatina, S.S. Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system. J. Colloid Interfac Sci. 2012, 372, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Haldorai, Y.; Shim, J.-J. Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Compos. Interface 2013, 20, 365–377. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, R.; Fu, Y.; Guan, Y.; Yao, J.; Xiao, L.; Zeng, G. Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 2012, 286, 41–48. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Chen, B.-Y.; Den, W. Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications. Appl. Sci. 2015, 5, 1272-1283. https://doi.org/10.3390/app5041272
Lee M, Chen B-Y, Den W. Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications. Applied Sciences. 2015; 5(4):1272-1283. https://doi.org/10.3390/app5041272
Chicago/Turabian StyleLee, Mengshan, Bo-Yen Chen, and Walter Den. 2015. "Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications" Applied Sciences 5, no. 4: 1272-1283. https://doi.org/10.3390/app5041272
APA StyleLee, M., Chen, B. -Y., & Den, W. (2015). Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications. Applied Sciences, 5(4), 1272-1283. https://doi.org/10.3390/app5041272