Altered Mechano-Electrochemical Behavior of Articular Cartilage in Populations with Obesity
Abstract
:1. Introduction
2. Material and Methods
2.1. Flow Equations
2.2. Momentum Balance Equation of the Mixture
2.3. Simulation of the Articular Cartilage Behavior for People with Obesity
2.3.1. Initial Conditions
2.3.2. Boundary Conditions
3. Results and Discussion
3.1. Proteoglycan Repulsion
3.2. Alterations of Cartilage Tissue in People with Obesity
3.2.1. Displacement and Water Flux
3.2.2. Cation Fluxes
3.2.3. Anion Fluxes
3.2.4. Cation Distribution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of interest
References
- Finkelstein, E.A.; Fiebelkorn, I.C.; Wang, G. Nationalmedical spending attributable to overweight and obesity: How much, and who’s paying? Health Aff. 2003, 22, 219–226. [Google Scholar]
- Ogden, C.L.; Yanovski, S.Z.; Carroll, M.D.; Flegal, K.M. The epidemiology of obesity. Gastroenterology 2007, 132, 2087–2102. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, F.X. The practical guide identification, evaluation, and treatment of overweight and obesity in adults. Available online: http://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf (accessed on 23 June 2016).
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [PubMed]
- Puhl, R.M.; Heuer, C.A. The stigma of obesity: A review and update. Obesity 2009, 17, 941–964. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Naimark, A.; Walker, A.M.; Meenan, R.F. Obesity and knee osteoarthritis. Ann. Intern. Med. 1988, 109, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Chaisson, C.E. Understanding the relationship between body weight and osteoarthritis. Bailliere Clin. Rheum. 1997, 11, 671–681. [Google Scholar] [CrossRef]
- Oliveria, S.A.; Felson, D.T.; Cirillo, P.A.; Reed, J.I.; Walker, A.M. Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 1999, 10, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, R.L.; Negendank, W.G.; Teitge, R.A.; Reed, A.H.; Miller, P.R.; Fernandez-Madrid, F. Factors affecting articular cartilage thickness in osteoarthritis and aging. J. Rheum. 1994, 21, 1310–1318. [Google Scholar] [PubMed]
- Pottie, P.; Presle, N.; Terlain, B.; Netter, P.; Mainard, D.; Berenbaum, F. Obesity and osteoarthritis: More complex than predicted! Ann. Rheum. Dis. 2006, 65, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Travascio, F.; Eltoukhy, M.; Cami, S.; Asfour, S. Altered mechano-chemical environment in hip articular cartilage: Effect of obesity. Biomech. Mod. Mechanobio. 2014, 13, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T. Weight and osteoarthritis. Am. J. Clin. Nutr. 1996, 63, 430S–432S. [Google Scholar] [PubMed]
- O’Hara, B.P.; Urban, J.P.; Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 1990, 49, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.M.; Frank, E.H.; Grimshaw, P.E.; Grodzinsky, A.J. Contributions of fluid convection and electrical migration to transport in cartilage: Relevance to loading. Arch. Biochem. Biophys. 1996, 333, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Vinther, M.; Maloney, M.D.; Schwarz, E.M.; Rosier, R.; O’Keefe, R.J. Articular cartilage biology. J. Am. Acad. Orthop. Surg. 2003, 11, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Ateshian, G.A.; Maa, S.; Weiss, J.A. Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes. J. Biomech. Eng. 2013, 135. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, V.; Pouran, B.; Weinans, H.; Zadpoor, A.A. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model. J. Biomech. 2016, 49, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.M.J.; Kokkonen, H.T.; Jurvelin, J.S.; Töyräs, J.; Kaipio, J.P. Estimation of fixed charge density and diffusivity profiles in cartilage using contrast enhanced computer tomography. Int. J. Numer. Methods Eng. 2014, 98, 371–390. [Google Scholar] [CrossRef]
- Manzano, S.; Gaffney, E.A.; Doblare, M.; Doweidar, M.H. Cartilage dysfunction in ALS patients as side effect of motion loss: 3D mechano-electrochemical computational model. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Manzano, S.; Manzano, R.; Doblaré, M.; Doweidar, M.H. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: A computational analysis. J. Roy. Soc. Int. 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.M.; Hou, J.S.; Mow, V.C. A triphasic theory for the swelling and deformation behaviors of articular-cartilage. J. Biomech. Eng. 1991, 113, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.N.; Gu, W.Y.; Guo, X.E.; Lai, W.M.; Mow, V.C. A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int. J. Num. Meth. Eng. 1999, 45, 1375–1402. [Google Scholar] [CrossRef]
- Mow, V.C.; Guo, X.E. Mechano-electrochemical properties of articular cartilage: Their inhomogeneities and anisotropies. Ann. Rev. Biomed. Eng. 2002, 4, 175–209. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.M.; Janssen, J.D. Quadriphasic mechanics of swelling incompressible porous media. Intern. J. Eng. Sci. 1997, 35, 793–802. [Google Scholar] [CrossRef]
- Gu, W.Y.; Lai, W.M.; Mow, V. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviors. J. biomechan. eng. 1998, 120, 169–180. [Google Scholar] [CrossRef]
- Sun, D.D.; Guo, X.E.; Likhitpanichkul, M.; Lai, W.M.; Mow, V.C. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. J. Biomech. Eng. 2004, 126, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.J.; Cortes, D.H. A nonlinear biphasic viscohyperelastic model for articular cartilage. J. Biomech. 2006, 39, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Kaasschieter, E.F.; Frijns, A.J.H.; Huyghe, J.M. Mixed finite element modelling of cartilaginous tissues. Math. Comput. Simul. 2003, 61, 549–560. [Google Scholar] [CrossRef]
- Chen, S.S.; Falcovitz, Y.H.; Schneiderman, R.; Maroudas, A.; Sah, R.L. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: Relationship to fixed charge density. Osteoarthr. Cartil. 2011, 9, 561–569. [Google Scholar] [CrossRef] [PubMed]
Description | Symbol | Range or Studied Value | Reference |
---|---|---|---|
Young’s modulus | E | 0.6 MPa | [19] |
Poisson coefficient | ν | 0.28 | [19] |
Drag coefficient between the solid and the water phase | α | 7 × 1014 N·s·m−4 | [22] |
Diffusivity of the cations | D+ | 5 × 10−1 m·s−1 | [22] |
Diffusivity of the anions | D− | 8 × 10−1 m·s−1 | [22] |
Initial FCD | ‑ | 0.2 mEq·mL−1 | [22] |
Activity coefficient of cations | 0.86 | [21] | |
Activity coefficient of anions | 0.85 | [21] | |
Gas constant | R | 8.314 J·mol−1·K−1 | [22] |
Absolute temperature | T | 298 K | [22] |
Osmotic coefficient | Φ | 0.8 | [21] |
Initial amount of water in the tissue | 0.75 | [22] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzano, S.; Doblaré, M.; Hamdy Doweidar, M. Altered Mechano-Electrochemical Behavior of Articular Cartilage in Populations with Obesity. Appl. Sci. 2016, 6, 186. https://doi.org/10.3390/app6070186
Manzano S, Doblaré M, Hamdy Doweidar M. Altered Mechano-Electrochemical Behavior of Articular Cartilage in Populations with Obesity. Applied Sciences. 2016; 6(7):186. https://doi.org/10.3390/app6070186
Chicago/Turabian StyleManzano, Sara, Manuel Doblaré, and Mohamed Hamdy Doweidar. 2016. "Altered Mechano-Electrochemical Behavior of Articular Cartilage in Populations with Obesity" Applied Sciences 6, no. 7: 186. https://doi.org/10.3390/app6070186