Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China
Abstract
:1. Introduction
2. Mathematical Model
2.1. Julian Day (JD)
2.2. Solar Declination (δ)
2.3. Angle Incidence (θ)
2.4. Sunrise and Sunset Hour Angle
2.5. Extraterrestrial Solar Radiation
3. Object System by Using HS Theory
3.1. Objective Function
3.2. Constraints
- Tilt angles
- Azimuth angles
3.3. HS Searching Procedure
4. Statistical Methods
5. Results and Discussions
6. Conclusions
- In most cases, the best orientation is due south (optimum azimuth angle, 180°) in the selected cities. Except when the azimuth angle equals 180°, the extraterrestrial solar radiation decreases as the tilt angle increases.
- The optimum tilt angle increases during the winter months and reaches a maximum in December for all of the stations. To enhance the energy collected by the panel, if possible, the tilt angle should be changed once a month.
- According to MPE, MAPE, MABE, and RMSE, errors with the HS method are less than those with PSO. Moreover, the extraterrestrial solar radiation of HS is larger than that of PSO. The application of HS performs better in the search for βopt.
- The proposed approach, the HS method, provides an accurate and simple alternative to the ergodic method. The experimental results of the HS method are very close to the standard values.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, H.R.; Guo, S. External benefit evaluation of renewable energy power in china for sustainability. Sustainability 2015, 7, 4783–4805. [Google Scholar] [CrossRef]
- Järvelä, M.; Valkealahti, S. Ideal operation of a photovoltaic power plant equipped with an energy storage system on electricity market. Appl. Sci. 2017, 7, 749. [Google Scholar] [CrossRef]
- Liu, L.-Q.; Wang, Z.-X.; Zhang, H.-Q.; Xue, Y.-C. Solar energy development in china—A review. Renew. Sustain. Energy Rev. 2010, 14, 301–311. [Google Scholar] [CrossRef]
- Li, D.; Lam, T.; Chu, V. Relationship between the total solar radiation on tilted surfaces and the sunshine hours in hong kong. Sol. Energy 2008, 82, 1220–1228. [Google Scholar] [CrossRef]
- Samani, P.; Mendes, A.; Leal, V.; Correia, N. Pre-fabricated, environmentally friendly and energy self-sufficient single-family house in kenya. J. Clean. Prod. 2017, 142, 2100–2113. [Google Scholar] [CrossRef]
- Dixit, T.V.; Yadav, A.; Gupta, S. Optimization of pv array inclination in india using ann estimator: Method comparison study. Sadhana-Acad. Proc. Eng. Sci. 2015, 40, 1457–1472. [Google Scholar] [CrossRef]
- Gopinathan, K.K.; Mallehe, N.B.; Mpholo, M.I. A study on the intercepted insolation as a function of slope and azimuth of the surface. Energy 2007, 32, 213–220. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Simons, K.T.; Kooperberg, C.; Huang, E.; Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Biol. 1997, 268, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Dupanloup, I.; Schneider, S.; Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef] [PubMed]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE trans. neural netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Yaow-Ming, C.; Chien-Hsing, L.; Hsu-Chin, W. Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Trans. Energy Convers. 2005, 20, 467–473. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Chang, Y.-P. An ant direction hybrid differential evolution algorithm in determining the tilt angle for photovoltaic modules. Expert Syst. Appl. 2010, 37, 5415–5422. [Google Scholar] [CrossRef]
- Zang, H.; Guo, M.; Wei, Z.; Sun, G. Determination of the optimal tilt angle of solar collectors for different climates of china. Sustainability 2016, 8, 654. [Google Scholar] [CrossRef]
- Chang, Y.P. Optimal the tilt angles for photovoltaic modules using pso method with nonlinear time-varying evolution. Energy 2010, 35, 1954–1963. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- Sandgren, E. Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 1990, 112, 223–229. [Google Scholar] [CrossRef]
- Wu, S.-J.; Chow, P.-T. Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Eng. Optim. 1995, 24, 137–159. [Google Scholar] [CrossRef]
- Lee, A.; Geem, Z.W.; Suh, K.-D. Determination of optimal initial weights of an artificial neural network by using the harmony search algorithm: Application to breakwater armor stones. Appl. Sci. 2016, 6, 164. [Google Scholar] [CrossRef]
- Lam, J.C.; Wan, K.K.; Yang, L. Solar radiation modelling using anns for different climates in china. Energy Convers. Manag. 2008, 49, 1080–1090. [Google Scholar] [CrossRef]
- Lau, C.C.; Lam, J.C.; Yang, L. Climate classification and passive solar design implications in china. Energy Convers. Manag. 2007, 48, 2006–2015. [Google Scholar] [CrossRef]
- Yang, L.; Wan, K.K.; Li, D.H.; Lam, J.C. A new method to develop typical weather years in different climates for building energy use studies. Energy 2011, 36, 6121–6129. [Google Scholar] [CrossRef]
- Zang, H.; Xu, Q.; Bian, H. Generation of typical solar radiation data for different climates of china. Energy 2012, 38, 236–248. [Google Scholar] [CrossRef]
- Tang, R.S.; Tong, W. Optimal tilt-angles for solar collectors used in china. Appl. Energy 2004, 79, 239–248. [Google Scholar] [CrossRef]
- Tang, R.S.; Yu, Y.M. Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned cpcs for photovoltaic applications. Sol. Energy 2010, 84, 1666–1675. [Google Scholar] [CrossRef]
- Sakonidou, E.P.; Karapantsios, T.D.; Balouktsis, A.I.; Chassapis, D. Modeling of the optimum tilt of a solar chimney for maximum air flow (vol 82, pg 80, 2008). Sol. Energy 2012, 86, 809. [Google Scholar] [CrossRef]
- Huang, B.J.; Sun, F.S. Feasibility study of one axis three positions tracking solar pv with low concentration ratio reflector. Energy Convers. Manag. 2007, 48, 1273–1280. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Schaap, A.B.; Veltkamp, W.B. Solar Engineering of Thermal Processes, 2nd ed.; Elsevier Science Publishers: New York, NY, USA, 1993; Volume 51, p. 521. [Google Scholar]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization; IEEE: New York, NY, USA, 1995; pp. 1942–1948. [Google Scholar]
- Fulginei, F.R.; Salvini, A. Comparative analysis between modern heuristics and hybrid algorithms. Compel-Int. J. Comp. Math. Electr. Electron. Eng. 2007, 26, 259–268. [Google Scholar] [CrossRef]
- Li, H.; Ma, W.; Lian, Y.; Wang, X. Estimating daily global solar radiation by day of year in china. Appl. Energy 2010, 87, 3011–3017. [Google Scholar] [CrossRef]
- Jiang, Y. Generation of typical meteorological year for different climates of china. Energy 2010, 35, 1946–1953. [Google Scholar] [CrossRef]
- Bulut, H.; Büyükalaca, O. Simple model for the generation of daily global solar-radiation data in turkey. Appl. Energy 2007, 84, 477–491. [Google Scholar] [CrossRef]
- Ampratwum, D.B.; Dorvlo, A.S. Estimation of solar radiation from the number of sunshine hours. Appl. Energy 1999, 63, 161–167. [Google Scholar] [CrossRef]
- Menges, H.O.; Ertekin, C.; Sonmete, M.H. Evaluation of global solar radiation models for konya, turkey. Energy Convers. Manag. 2006, 47, 3149–3173. [Google Scholar] [CrossRef]
- Jiang, Y. Computation of monthly mean daily global solar radiation in china using artificial neural networks and comparison with other empirical models. Energy 2009, 34, 1276–1283. [Google Scholar] [CrossRef]
- Jin, Z.; Yezheng, W.; Gang, Y. General formula for estimation of monthly average daily global solar radiation in china. Energy Convers. Manag. 2005, 46, 257–268. [Google Scholar] [CrossRef]
Climate | Location | Latitude (Φ) | Longitude (E) | Elevation (m) |
---|---|---|---|---|
TZ | Sanya | 18°14′ | 109°31′ | 5.9 |
SZ | Shanghai | 31°24′ | 121°29′ | 6 |
WTZ | Zhengzhou | 34°43′ | 113°39′ | 110.4 |
MTZ | Harbin | 45°45′ | 126°46′ | 142.3 |
CTZ | Mohe | 53°28′ | 122°31′ | 433 |
TPZ | Lhasa | 29°40′ | 91°08′ | 3648.7 |
Station | Method | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
Sanya (TZ) | Ergodic | 47.2 | 37.7 | 21.8 | 3.6 | −11.7 | −18.1 | −15.2 | 3.1 | 15.1 | 32.9 | 45.0 | 49.9 |
PSO | 47.45 | 37.17 | 22.23 | 3.74 | −11.88 | −18.14 | −14.67 | 3.28 | 15.60 | 32.66 | 45.25 | 49.78 | |
HS | 47.24 | 37.73 | 21.90 | 3.67 | −11.76 | −18.12 | −15.22 | 3.15 | 15.11 | 32.95 | 45.08 | 49.86 | |
Shanghai (SZ) | Ergodic | 59.0 | 50.1 | 34.9 | 16.6 | 5.3 | −7.6 | 3.8 | 11.1 | 28.3 | 45.6 | 57.0 | 61.4 |
PSO | 58.19 | 49.17 | 33.89 | 15.22 | 5.49 | −8.32 | 4.02 | 11.35 | 28.17 | 44.33 | 56.26 | 60.51 | |
HS | 58.99 | 50.18 | 35.00 | 16.56 | 5.33 | −7.58 | 3.81 | 11.07 | 28.26 | 45.66 | 56.96 | 61.40 | |
Zhengzhou (WTZ) | Ergodic | 61.9 | 53.2 | 38.2 | 19.8 | 8.0 | 5.5 | 6.4 | 14.2 | 31.6 | 48.8 | 59.9 | 64.3 |
PSO | 61.95 | 53.06 | 38.36 | 19.37 | 7.74 | 5.45 | 6.31 | 13.89 | 31.52 | 48.80 | 59.83 | 64.19 | |
HS | 61.93 | 53.20 | 38.29 | 19.80 | 8.01 | 5.52 | 6.42 | 14.13 | 31.58 | 48.85 | 59.88 | 64.28 | |
Harbin (MTZ) | Ergodic | 71.5 | 63.5 | 49.1 | 30.8 | 16.5 | 12.6 | 14.0 | 24.7 | 42.6 | 59.3 | 69.7 | 73.7 |
PSO | 71.59 | 63.46 | 49.83 | 30.67 | 16.15 | 12.82 | 13.96 | 23.67 | 42.69 | 59.14 | 69.41 | 73.58 | |
HS | 71.52 | 63.65 | 49.23 | 30.49 | 16.56 | 12.62 | 13.96 | 24.73 | 42.58 | 59.29 | 69.47 | 73.68 | |
Mohe (CTZ) | Ergodic | 77.9 | 70.5 | 56.8 | 38.7 | 23.0 | 16.6 | 19.2 | 32.7 | 50.3 | 66.5 | 76.3 | 80.0 |
PSO | 77.69 | 70.33 | 56.90 | 38.47 | 22.12 | 16.57 | 19.20 | 31.20 | 50.60 | 66.30 | 76.48 | 80.04 | |
HS | 77.90 | 70.51 | 56.86 | 38.57 | 23.06 | 16.59 | 19.16 | 32.76 | 50.33 | 66.47 | 76.34 | 80.00 | |
Lhasa (TPZ) | Ergodic | 57.5 | 48.6 | 33.3 | 14.9 | 3.8 | −8.9 | −5.7 | 9.5 | 26.5 | 44.0 | 55.4 | 59.9 |
PSO | 57.56 | 48.73 | 33.14 | 14.97 | 3.58 | −8.62 | −5.64 | 8.99 | 26.48 | 44.18 | 55.31 | 59.98 | |
HS | 57.46 | 48.54 | 33.28 | 14.92 | 3.88 | −8.91 | −5.69 | 9.55 | 26.53 | 43.99 | 55.44 | 59.89 |
Month | Ergodic Method | PSO Method | HS Method | βopt = Φ | βopt = Φ + 15(°) | βopt = Φ − 15(°) | |||
---|---|---|---|---|---|---|---|---|---|
βopt(°) | I(MJ/m2) | βopt(°) | I(MJ/m2) | βopt(°) | I(MJ/m2) | ||||
Jan | 59.0 | 1100.86 | 58.19 | 1100.76 | 58.99 | 1100.86 | 975.89 | 1074.49 | 810.79 |
Feb | 50.1 | 1046.94 | 49.17 | 1046.80 | 50.18 | 1046.94 | 991.57 | 1044.74 | 870.83 |
Mar | 34.9 | 1182.78 | 33.89 | 1182.58 | 35 | 1182.78 | 1180.54 | 1159.16 | 1121.48 |
Apr | 16.6 | 1156.53 | 15.22 | 1156.21 | 16.56 | 1156.53 | 1118.21 | 1004.55 | 1156.52 |
May | 5.3 | 1213.51 | 5.49 | 1213.50 | 5.33 | 1213.51 | 1070.68 | 887.24 | 1184.17 |
Jun | −7.6 | 1180.48 | −8.32 | 1180.38 | −7.58 | 1180.48 | 982.83 | 780.58 | 1122.34 |
Jul | 3.8 | 1215.11 | 4.02 | 1215.10 | 3.81 | 1215.11 | 1042.77 | 845.05 | 1173.14 |
Aug | 11.1 | 1205.31 | 11.35 | 1205.29 | 11.07 | 1205.31 | 1129.09 | 983.04 | 1199.82 |
Sep | 28.3 | 1146.41 | 28.17 | 1146.41 | 28.26 | 1146.41 | 1144.69 | 1089.48 | 1122.01 |
Oct | 45.6 | 1169.21 | 44.33 | 1168.94 | 45.66 | 1169.21 | 1133.67 | 1169.09 | 1020.99 |
Nov | 57.0 | 1083.85 | 56.26 | 1083.77 | 56.96 | 1083.85 | 977.85 | 1065.52 | 823.54 |
Dec | 61.4 | 1078.14 | 60.51 | 1078.01 | 61.4 | 1078.14 | 933.68 | 1041.40 | 762.34 |
Methods | Statistical Indicators | Sanya | Shanghai | Zhengzhou | Harbin | Mohe | Lhasa |
---|---|---|---|---|---|---|---|
PSO | MPE | 0.9968 | 0.0560 | −0.8521 | −0.3617 | −0.7451 | −1.2242 |
MAPE | 1.9739 | 3.4607 | 0.9353 | 0.9567 | 0.9215 | 1.4549 | |
MABE | 0.2825 | 0.7117 | 0.1458 | 0.2742 | 0.3200 | 0.1550 | |
RMSE | 0.3266 | 0.8206 | 0.1894 | 0.4005 | 0.5264 | 0.2018 | |
HS | MPE | 0.4376 | 0.0337 | 0.0472 | −0.0450 | 0.0022 | 0.2163 |
MAPE | 0.4510 | 0.2008 | 0.1507 | 0.2405 | 0.1105 | 0.2943 | |
MABE | 0.0475 | 0.0383 | 0.0292 | 0.0867 | 0.0392 | 0.0317 | |
RMSE | 0.0539 | 0.0476 | 0.0393 | 0.1279 | 0.0524 | 0.0385 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Zang, H.; Gao, S.; Chen, T.; Xiao, J.; Cheng, L.; Wei, Z.; Sun, G. Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China. Appl. Sci. 2017, 7, 1028. https://doi.org/10.3390/app7101028
Guo M, Zang H, Gao S, Chen T, Xiao J, Cheng L, Wei Z, Sun G. Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China. Applied Sciences. 2017; 7(10):1028. https://doi.org/10.3390/app7101028
Chicago/Turabian StyleGuo, Mian, Haixiang Zang, Shengyu Gao, Tingji Chen, Jing Xiao, Lexiang Cheng, Zhinong Wei, and Guoqiang Sun. 2017. "Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China" Applied Sciences 7, no. 10: 1028. https://doi.org/10.3390/app7101028
APA StyleGuo, M., Zang, H., Gao, S., Chen, T., Xiao, J., Cheng, L., Wei, Z., & Sun, G. (2017). Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China. Applied Sciences, 7(10), 1028. https://doi.org/10.3390/app7101028