Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters
Abstract
:1. Introduction
- The simplest and most economical scheme is using RSOAs as amplified spontaneous emitters (ASE) source in a spectrum-sliced scheme, as shown in Figure 1a. The US signal is directly modulated onto the ASE of the RSOA. At the remote node (RN), a WDM filter slices the modulated ASE, passing only the assigned sub bands from each ONU to the central office (CO) [18,19]. The scheme is low-cost and simple, but so far only bit rates below 1 Gbit/s have been achieved for each wavelength, with this scheme. The limitations of this scheme are high filtering losses and susceptibility to chromatic dispersion due to a broad optical spectrum.
- Another cost-efficient source—however with improved performance—is the self-seeded RSOA fiber cavity laser (RSOA-FCLs) as suggested in [20,21] and depicted in Figure 1b. In this case, a mirror is placed at the RN behind the WDM filter. This establishes a feedback mechanism to the RSOA to form a Fabry-Perot laser resonator. The operating wavelength of each ONU’s RSOA-FCL is determined by the WDM filter port it is connected to. This passive assignment of the emission wavelength simplifies the wavelength control. Thus far, RSOA-FCL have shown to transmit up to 10 Gbit/s [22,23].
- The highest performance—however, a relatively expensive scheme—is the externally seeded RSOA, shown in Figure 1c. Here, a bank of lasers, one for each ONU, is installed at the CO. The WDM filter at the RN redistributes the individual cw (continuous wave) laser lines to each ONU. At the ONUs the RSOAs amplify the seeding light and encode the US signal. Externally seeded RSOAs have already shown transmission beyond 20 Gbit/s with pulse amplitude modulation (PAM) [24] and more than 25 Gbit/s using discrete multi-tone (DMT) [14,25]. However, in both cases, controlled offset filtering by a WDM filter or an additional delay line interferometer was required, which makes the system sensitive to any wavelength drift. In addition, the extra lasers at the CO increases cost and energy consumption.
2. DMT Signal Generation and Reception
3. Experimental Setups
4. SNR Characterization
4.1. Electrical Bandwidth of the RSOA
4.2. RSOA-FCL Performance
4.3. Performance Comparison of the Three Transmitter Schemes
5. Bit- and Power-Loaded DMT for Highest Bit Rates
5.1. Maximizing the Capacity of the RSOA-FCL
5.2. Comparison of Maximizing Capacity
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Effenberger, F.J.; Mukai, H.; Park, S.; Pfeiffer, T. Next-generation PON-part II: Candidate systems for next-generation PON. IEEE Commun. Mag. 2009, 47, 50–57. [Google Scholar] [CrossRef]
- Vetter, P. Next generation optical access technologies. In Proceedings of the European Conference and Exhibition on Optical Communication, Amsterdam, The Netherlands, 16–20 September 2012. Tu.3.G.1. [Google Scholar]
- Pfeiffer, T. Next Generation Mobile Fronthaul and Midhaul Architectures [Invited]. J. Opt. Commun. Netw. 2015, 7, 38–45. [Google Scholar] [CrossRef]
- Saliou, F.; Gael, S.; Chanclou, P.; Pizzinat, A.; Lin, H.; Zhou, E.; Xu, Z. WDM PONs Based on Colorless Technology. Opt. Fiber Technol. 2015, 26, 126–134. [Google Scholar] [CrossRef]
- Woodward, S.L.; Iannone, P.P.; Reichmann, K.C.; Frigo, N.J. A spectrally Sliced PON Employing Fabry-Perot lasers. IEEE Photonics Technol. Lett. 1998, 10, 1337–1339. [Google Scholar] [CrossRef]
- Frigo, N.J. Recent Progress in Optical Access Networks. In Proceedings of the Optical Fiber Communications, San Jose, CA, USA, 25 February–1 March 1996; pp. 142–143. [Google Scholar]
- Payoux, F.; Chanclou, P.; Genay, N. WDM-PON with Colorless ONUs. In Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 25 March 2007. [Google Scholar]
- Horiuchi, Y. Economical Solutions of the WDM-PON System. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012; pp. 1–3. [Google Scholar]
- Healey, P.; Townsend, P.; Ford, C.; Johnston, L.; Townley, P.; Lealman, I.; Rivers, L.; Perrin, S.; Moore, R. Spectral Slicing WDM-PON Using Wavelength-Seeded Reflective SOAs. Electron. Lett. 2001, 37, 1181–1182. [Google Scholar] [CrossRef]
- Han, K.H.; Son, E.S.; Choi, H.Y.; Lim, K.W.; Chung, Y.C. Bidirectional WDM PON using Light-Emitting Diodes Spectrum-Sliced with Cyclic Arrayed-Waveguide Grating. IEEE Photonics Technol. Lett. 2004, 16, 2380–2382. [Google Scholar] [CrossRef]
- Arellano, C.; Polo, V.; Bock, C.; Prat, J. Bidirectional Single Fiber Transmission Based on a RSOA ONU for FTTH Using FSK-IM Modulation Formats. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 6–11 March 2005. JWA46. [Google Scholar]
- Buset, J.M.; El-Sahn, Z.A.; Plant, D.V. Experimental Demonstration of a 10 Gb/s RSOA-based 16-QAM Subcarrier Multiplexed WDM PON. Opt. Express 2014, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.L.; Hugues-Salas, E.; Giddings, R.P.; Jin, X.Q.; Zheng, X.; Mansoor, S.; Tang, J.M. Wavelength Reused Bidirectional Transmission of Adaptively Modulated Optical OFDM Signals in WDM-PONs Incorporating SOA and RSOA Intensity Modulators. Opt. Express 2010, 18, 9791–9808. [Google Scholar] [CrossRef] [PubMed]
- Presi, M.; Cossu, G.; Chiuchiarelli, A.; Bottoni, F.; Corsini, R.; Choudhury, P.; Giorgi, L.; Ciaramella, E. 25 Gb/s Operation of 1-GHz Bandwidth R-SOA by using DMT and Optical Equalization. In Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 17–21 March 2013. OW1A.7. [Google Scholar]
- De Valicourt, G.; Maké, D.; Landreau, J.; Lamponi, M.; Duan, G.H.; Chanclou, P.; Brenot, R. High Gain (30 dB) and High Saturation Power (11 dBm) RSOA Devices as Colorless ONU Sources in Long-Reach Hybrid WDM/TDM-PON Architecture. IEEE Photonics Technol. Lett. 2010, 22, 191–193. [Google Scholar] [CrossRef]
- Lin, G.R.; Liao, Y.S.; Chi, Y.C.; Kua, H.C.; Lin, G.C.; Wang, H.L.; Chen, Y.J. Long-Cavity Fabrey-Perot Laser Amplifier Transmitter with Enhanced Injection-Locking Bandwidth for WDM-PON Application. J. Lightwave Technol. 2010, 28, 2925–2932. [Google Scholar] [CrossRef]
- Gebrewold, S.A.; Bonjour, R.; Barbet, S.; Maho, A.; Brenot, R.; Chanclou, P.; Brunero, M.; Marazzi, L.; Parolari, P.; Totovic, A.; et al. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study. Appl. Sci. 2015, 5, 1922–1941. [Google Scholar] [CrossRef]
- Sung-Bum, P.; Dae Kwang, J.; Dong, J.S.; Hong, S.S.; Yun, I.K.; Jeong, S.L.; Yun, K.O.; Yun, J.O. Colorless Operation of WDM-PON Employing Uncooled Spectrum-Sliced RSOA. IEEE Photonics Technol. Lett. 2007, 19, 248–250. [Google Scholar]
- Henning, L.F.; Monteiro, P.; Almeida, A.D.; Pohl, P. Comparison of LED and RSOA performance in WDM-PONs. In Proceedings of the 21st International Conference on Telecommunications, Lisbon, Portugal, 4–7 May 2014; pp. 124–128. [Google Scholar]
- Wong, E.; Lee, K.L.; Anderson, T.B. Directly Modulated Self-Seeding Reflective Semiconductor Optical Amplifiers as Colorless Transmitters in Wavelength Division Multiplexed Passive Optical Networks. J. Lightwave Technol. 2007, 25, 67–74. [Google Scholar] [CrossRef]
- Marazzi, L.; Parolari, P.; Brenot, R.; De Valicourt, G.; Martinelli, M. Network-embedded self-tuning cavity for WDM-PON transmitter. Opt. Express 2012, 20, 3781–3786. [Google Scholar] [CrossRef] [PubMed]
- Maho, A.; Gael, S.; Barbet, S.; Francois, L.; Saliou, F.; Chanclou, P.; Parolari, P.; Marazzi, L.; Brunero, M.; Martinelli, M.; et al. Demystification of the Self-Seeded WDM Access. J. Lightwave Technol. 2015, 34, 776–782. [Google Scholar] [CrossRef]
- Le, S.D.; Lebreton, A.; Saliou, F.; Deniel, Q.; Charbonier, B.; Chanclou, P. Up to 60 km Bidirectional Transmission of a 16 Channels × 10 Gb/s FDM-WDM PON Based on Self-Seeded Reflective Semiconductor Optical Amplifiers. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 9–13 March 2014. Th3G.8. [Google Scholar]
- Shim, H.; Kim, H.; Chung, Y.C. 20-Gb/s Operation of RSOA using Polar Return-to-Zero 4-PAM Modulation Format and Direct Detection. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015. W1J.2. [Google Scholar]
- Cossu, G.; Bottoni, F.; Corsini, R.; Presi, M.; Ciaramella, E. 40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM. IEEE Photonics Technol. Lett. 2013, 25, 2119–2122. [Google Scholar] [CrossRef]
- De Valicourt, G.; Make, D.; Fortin, C.; Enard, A.; Van-Dijk, F.; Brenot, R. 10 Gbit/s Modulation of RSOA without any Electronic Processing. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011. OThT2. [Google Scholar]
- Cho, K.Y.; Takushima, Y.; Chung, Y.C. 10-Gb/s Operation of RSOA for WDM PON. IEEE Photonics Technol. Lett. 2008, 20, 1533–1535. [Google Scholar] [CrossRef]
- Hoon, K. 10-Gb/s Operation of RSOA Using a Delay Interferometer. IEEE Photonics Technol. Lett. 2010, 22, 1379–1381. [Google Scholar]
- Torrientes, D.; Chanclou, P.; Laurent, F.; Tsyier, S.; Chang, Y.F.; Charbonnier, B.; Raharimanitra, F. RSOA-Based 10.3 Gbit/s WDM-PON with Pre-Amplification and Electronic Equalization. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 21–25 March 2010. JThA28. [Google Scholar]
- Papagiannakis, I.; Omella, M.; Klonidis, D.; Birbas, A.N.; Kikidis, J.; Tomkos, I.; Prat, J. Investigation of 10-Gb/s RSOA-Based Upstream Transmission in WDM-PONs Utilizing Optical Filtering and Electronic Equalization. IEEE Photonics Technol. Lett. 2008, 20, 2168–2170. [Google Scholar] [CrossRef]
- Cho, K.Y.; Chung, Y.C. 10-Gb/s Operation of RSOA for WDM PON Using Return-to-Zero Modulation Format. In Proceedings of the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, CA, USA, 4–8 March 2012. OTh1F.2. [Google Scholar]
- Hyun Kyu, S.; Hoon, K.; Yun, C.C. 20-Gb/s Polar RZ 4-PAM Transmission over 20-km SSMF Using RSOA and Direct Detection. IEEE Photonics Technol. Lett. 2015, 27, 1116–1119. [Google Scholar]
- Zhang, Q.W.; Hugues-Salas, E.; Ling, Y.; Zhang, H.B.; Giddings, R.P.; Zhang, J.J.; Wang, M.; Tang, J.M. Record-high and robust 17.125 Gb/s gross-rateover 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs. Opt. Express 2014, 22, 6339–6348. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Dong, P.; Randel, S.; Winzer, P.; Spiga, S.; Koegel, B.; Neumeyr, C.; Amann, M.C. Single-VCSEL 100-Gb/s Short-Reach System Using Discrete Multi-Tone Modulation and Direct Detection. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3. [Google Scholar]
- Takahara, T.; Tanaka, T.; Nishihara, M.; Kai, Y.; Li, L.; Tao, Z. Discrete Multi-Tone for 100 Gb/s Optical Access Networks. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014. M2l.1. [Google Scholar]
- Nadal, L.; Moreolo, M.S.; Fabrega, J.M.; Dochhan, A.; Griesser, H.; Eiselt, M.; Elbers, J.P. DMT Modulation With Adaptive Loading for High Bit Rate Transmission Over Directly Detected Optical Channels. J. Lightwave Technol. 2014, 32, 4143–4153. [Google Scholar] [CrossRef]
- Gebrewold, S.A.; Brenot, R.; Bonjour, R.; Josten, A.; Baeuerle, B.; Hillerkuss, D.; Hafner, C.; Leuthold, J. Colorless Low-Cost RSOA Based Transmitters Optimized for Highest Capacity Through Bit- and Power-Loaded DMT. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016. Tu2C.4. [Google Scholar]
- Chow, P.S.; Cioffi, J.M.; Bingham, J.A. A practical Discrete Multitone Transceiver Loading Algorithm for Data Transmission over Spectrally Shaped Channels. IEEE Trans. Commun. 1995, 43, 773–775. [Google Scholar] [CrossRef]
- Pollet, T.; Peeters, M. Synchronization with DMT modulation. IEEE Commun. Mag. 1999, 37, 80–86. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kobayashi, T.; Ishihara, K.; Miyamoto, Y. Non-Data-Aided Wide-Range Frequency Offset Estimator for QAM Optical Coherent Receivers. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011. OMJ1. [Google Scholar]
- Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; Koos, C.; et al. EVM as a Performance Measure for Advanced Modulation Formats. IEEE Photonics Technol. Lett. 2012, 24, 61–63. [Google Scholar] [CrossRef]
- Martinelli, M.; Marazzi, L.; Parolari, P.; Brunero, M.; Gavioli, G. Polarization in Retracing Circuits for WDM-PON. IEEE Photonics Technol. Lett. 2012, 24, 1191–1193. [Google Scholar] [CrossRef]
- Marazzi, L.; Parolari, P.; Boletti, A.; Gatto, A.; Martinelli, M.; Brrnot, R. Highly-nonlinear RSOA RIN compression. In Proceedings of the 19th European Conference on Networks and Optical Communications, Milano, Italy, 4–6 June 2014; pp. 115–119. [Google Scholar]
- Kani, J.; Kawata, H.; Iwatsuki, K.; Ohki, A.; Sugo, M. Design and Demonstration of Gigabit Spectrum-Sliced WDM Systems Employing Directly Modulated Super Luminescent Diodes. In Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 6–11 March 2005. JWA49. [Google Scholar]
- Pendock, G.J.; Sampson, D.D. Transmission performance of high bit rate spectrum-sliced WDM systems. J. Lightwave Technol. 1996, 14, 2141–2148. [Google Scholar] [CrossRef]
- Wei, J.L.; Hamie, A.; Gidding, R.P.; Hugues-Salas, E.; Zheng, X.; Mansoor, S.; Tang, J.M. Adaptively Modulated Optical OFDM Modems Utilizing RSOAs as Intensity Modulators in IMDD SMF Transmission Systems. Opt. Express 2010, 18, 8556–8573. [Google Scholar] [CrossRef] [PubMed]
- Marazzi, L.; Parolari, P.; Brunero, M.; Gatto, A.; Martinelli, M.; Brenot, R.; Barbet, S.; Galli, P.; Gavioli, G. Up to 10.7-Gb/s High-PDG RSOA-Based Colorless Transmitter for WDM Networks. IEEE Photonics Technol. Lett. 2013, 25, 637–640. [Google Scholar] [CrossRef]
- Petermann, K. Noise Characterstics of Solitary Laser Diodes. In Laser Diode Modulation and Noise; Okoshi, T., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 152–208. [Google Scholar]
- Ma, Y.; Xu, Z.; Lin, H.; Zhou, M.; Wang, H.; Zhang, C.; Yu, J. Demonstration of Digital Fronthaul Over Self-Seeded WDM-PON in Commercial LTE Environment. Opt. Express 2015, 23, 11927–11935. [Google Scholar] [CrossRef] [PubMed]
- Gebrewold, S.A.; Marazzi, L.; Parolari, P.; Brenot, R.; Duill, P.O.S.; Bonjour, R.; Hillerkuss, D.; Hafner, C.; Leuthold, J. Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Gebrewold, S.A.; Marazzi, L.; Parolari, P.; Brunero, M.; Brenot, R.; Hillerkuss, D.; Hafner, C.; Leuthold, J. Colorless Self-Seeded Fiber Cavity Laser Transmitter for WDM-PON. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 8–13 June 2014. STu1J.4. [Google Scholar]
- André, N.S.; Habel, K.; Louchet, H.; Richter, A. Adaptive Nonlinear Volterra Equalizer for Mitigation of Chirp-Induced Distortions in Cost Effective IMDD OFDM Systems. Opt. Express 2013, 21, 26527–26532. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Saliou, F.; Chanclou, P.; Deniel, Q.; Erasme, D.; Brenot, R. 70 km external cavity DWDM sources based on O-band Self Seeded RSOAs for transmissions at 2.5 Gbit/s. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014. W3G.5. [Google Scholar]
- Zhang, L.M.; Kschischang, F.R. Staircase Codes with 6% to 33% Overhead. J. Lightwave Technol. 2014, 32, 1999–2002. [Google Scholar] [CrossRef]
- Bonk, R.; Brenot, R.; Meuer, C.; Vallaitis, T.; Tussupov, A.; Rode, J.C.; Sygletos, S.; Vorreau, P.; Lelarge, F.; Duan, G.H.; et al. 1.3/1.5 µm QD-SOAs for WDM/TDM GPON with Extended Reach and Large Upstream/Downstream Dynamic Range. In Proceedings of the Optical Fiber Communication—Incudes post deadline papers, San Diego, CA, USA, 22–26 March 2009. OWQ1. [Google Scholar]
RSOA-FCL Cavity Length | OBPF −3 dB Bandwidth | Peak SNR (dB) | Usable SNR Bandwidth (GHz) |
---|---|---|---|
15 m | 0.6 nm | 14.3 | 4.6 |
2 nm | 19.45 | 6.7 | |
115 m | 0.6 nm | 14.1 | 4.5 |
2 nm | 19.5 | 6.4 | |
1 km | 0.6 nm | 11.9 | 2.7 |
2 nm | 17.7 | 4.5 |
RSOA-FCL Cavity Length | Tx | Peak SNR (dB) | Usable SNR Bandwidth (GHz) |
---|---|---|---|
15 m | BtB | 19.45 | 6.7 |
25 km NZDSF | 19.01 | 3.2 | |
115 m | BtB | 19.5 | 6.4 |
25 km NZDSF | 19.2 | 3.2 | |
1 km | BtB | 17.7 | 4.5 |
25 km NZDSF | 17.1 | 2.8 |
ASE Spectrum-Sliced | RSOA-FCL (15 m) | RSOA-FCL (1 km) | Externally Seeded RSOA | |||||
---|---|---|---|---|---|---|---|---|
Line Rate (Gbit/s) | BER | Line Rate (Gbit/s) | BER | Line Rate (Gbit/s) | BER | Line Rate (Gbit/s) | BER | |
BtB | 6.25 | 5.8 × 10−3 | 20.1 | 5.8 × 10−3 | 12.4 | 5.8 × 10−3 | 30.7 | 5.7 × 10−3 |
25 km NZDSF | 4.2 | 2.3 × 10−3 | 10.1 | 4 × 10−3 | 7 | 5.8 × 10−3 | 24.5 | 7.1 × 10−3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebrewold, S.A.; Bonjour, R.; Brenot, R.; Hillerkuss, D.; Leuthold, J. Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters. Appl. Sci. 2017, 7, 999. https://doi.org/10.3390/app7100999
Gebrewold SA, Bonjour R, Brenot R, Hillerkuss D, Leuthold J. Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters. Applied Sciences. 2017; 7(10):999. https://doi.org/10.3390/app7100999
Chicago/Turabian StyleGebrewold, Simon Arega, Romain Bonjour, Romain Brenot, David Hillerkuss, and Juerg Leuthold. 2017. "Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters" Applied Sciences 7, no. 10: 999. https://doi.org/10.3390/app7100999
APA StyleGebrewold, S. A., Bonjour, R., Brenot, R., Hillerkuss, D., & Leuthold, J. (2017). Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters. Applied Sciences, 7(10), 999. https://doi.org/10.3390/app7100999