Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Subcritical Water Extraction
2.3. Ursolic Acid (UA) Purification
2.4. High Performance Liquid Chromatography (HPLC) and Electrospray Ionization Time-of-Flight Mass Spectrometry (ESI-TOF-MS) Analyses
2.5. Single Factor Experimental Design
2.6. Experimental Design of Response Surface Methodology (RSM)
2.7. Comparison of Different Extraction Methods
2.7.1. Maceration Extraction (ME)
2.7.2. Heat Reflux Extraction (HRE)
2.7.3. Ultrasonic Extraction (UE)
2.7.4. Microwave-Assisted Extraction (MAE)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Single Factor Experimental Analysis
3.1.1. Effect of Particle Size on the Extraction Yield of UA
3.1.2. Effect of Extraction Temperature on the Extraction Yield of UA
3.1.3. Effect of Extraction Time on the Extraction Yield of UA
3.1.4. Effect of Solvent/Solid Ratio on the Extraction Yield of UA
3.1.5. Effect of Extraction Pressure on the Extraction Yield of UA
3.2. Fitting the Model
3.3. Optimization of Subcritical Water Extraction
3.4. Comparison SWE with Other Extraction Methods
3.5. HPLC and ESI-TOF-MS Analyses
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dong, Q.; Ling, B.; Gao, B.; Maley, J.; Sammynaiken, R.; Yang, J. Hedyotis diffusa water extract diminished the cytotoxic effects of chemotherapy drugs against human breast cancer MCF7 cells. Nat. Prod. Commun. 2014, 9, 699–700. [Google Scholar] [PubMed]
- Xu, G.H.; Kim, Y.H.; Chi, S.W.; Choo, S.J.; Ryoo, I.J.; Ahn, J.S.; Yoo, I.D. Evaluation of human neutrophil elastase inhibitory effect of iridoid glycosides from Hedyotis diffusa. Bioorg. Med. Chem. Lett. 2010, 20, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Neuroprotective constituents from Hedyotis diffusa. J. Nat. Prod. 2001, 64, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci. 2011, 16, 980–996. [Google Scholar] [CrossRef]
- Yan, S.L.; Huang, C.Y.; Wu, S.T.; Yin, M.C. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol. In Vitro 2010, 24, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, C.; Wang, H.; Wang, L.; Xu, C.; Sun, Y. Phosphorylation of Bcl-2 and activation of caspase-3 via the c-jun N-terminal kinase pathway in ursolic acid-induced DU145 cells apoptosis. Biochimie 2009, 91, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 2016, 146, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wu, P.; Cheng, A.; Qin, J.; Zhang, K.; Zhao, S. A hydrophilic conjugate approach toward the design and synthesis of ursolic acid derivatives as potential antidiabetic agent. RSC Adv. 2015, 5, 44234–44246. [Google Scholar] [CrossRef]
- Wójciak-Kosior, M.; Sowa, I.; Kocjan, R.; Nowak, R. Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos. Ind. Crops Prod. 2013, 44, 373–377. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, L.; Cheng, N.; Jia, M.; Zhang, Y. Extraction optimization of oleanolic and ursolic acids from pomegranate (Punica granatum L.) flowers. Food Bioprod. Process. 2014, 92, 321–327. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Cizauskaite, U.; Ivanauskas, L.; Jakstas, V.; Kalveniene, Z.; Kopustinskiene, D.M. Novel approaches to optimize extraction processes of ursolic, oleanolic and rosmarinic acids from rosmarinus officinalis leaves. Ind. Crops Prod. 2016, 84, 72–79. [Google Scholar] [CrossRef]
- Vetal, M.D.; Lade, V.G.; Rathod, V.K. Extraction of ursolic acid from ocimum sanctum leaves: Kinetics and modeling. Food Bioprod. Process. 2012, 90, 793–798. [Google Scholar] [CrossRef]
- Domingues, R.M.A.; Sousa, G.D.A.; Silva, C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. High value triterpenic compounds from the outer barks of several eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 2011, 33, 158–164. [Google Scholar] [CrossRef]
- Banerjee, A.; Sane, R.T.; Mangaonkar, K.; Shailajan, S.; Deshpande, A.; Gundi, G. Quantitation of oleanolic acid in Oldenlandia corymbosa L. Whole-plant powder by high-performance thin-layer chromatography. JPC J. Planar Chromatogr. Mod. TLC 2006, 19, 68–72. [Google Scholar] [CrossRef]
- Baranauskaitė, J.; Jakštas, V.; Ivanauskas, L.; Kopustinskienė, D.M.; Drakšienė, G.; Masteikova, R.; Bernatonienė, J. Optimization of carvacrol, rosmarinic, oleanolic and ursolic acid extraction from oregano herbs (Origanum onites L., Origanum vulgare spp. Hirtum and Origanum vulgare L.). Nat. Prod. Res. 2015, 30, 1–3. [Google Scholar]
- Wu, H.; Li, G.; Liu, S.; Di, L.; Chen, G.; Na, H.; Suo, Y.; You, J. Simultaneous determination of six triterpenic acids in some chinese medicinal herbs using ultrasound-assisted dispersive liquid–liquid microextraction and high-performance liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal. 2014, 107, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Kanmaz, E.Ö. Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). Eur. Food Res. Technol. 2014, 238, 85–91. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Jiang, J.; Fang, Y.; Gao, Y. Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS + assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues. J. Food Sci. Technol. 2015, 52, 3803–3811. [Google Scholar] [CrossRef] [PubMed]
- Reddy, H.K.; Muppaneni, T.; Sun, Y.; Li, Y.; Ponnusamy, S.; Patil, P.D.; Dailey, P.; Schaub, T.; Holguin, F.O.; Dungan, B. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 2014, 133, 73–81. [Google Scholar] [CrossRef]
- Yang, L.; Qu, H.; Mao, G.; Zhao, T.; Li, F.; Zhu, B.; Zhang, B.; Wu, X. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacogn. Mag. 2013, 9, 120–129. [Google Scholar] [PubMed]
- Ndlela, S.C.; Moura, J.M.L.N.D.; Olson, N.K.; Johnson, L.A. Aqueous extraction of oil and protein from soybeans with subcritical water. J. Am. Oil Chem. Soc. 2012, 89, 1145–1153. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Prapintip, S.; Watchiraruji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour. Technol. 2008, 99, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Chen, J.J.; Wu, T.P.; Chang, C.Y. Optimising the frying temperature of gluten balls using response surface methodology. J. Sci. Food Agric. 1998, 77, 64–70. [Google Scholar] [CrossRef]
- Tao, F.; Hu, J.; Fu, L.; Zhang, L. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. By response surface methodology. Carbohydr. Polym. 2015, 115, 701–706. [Google Scholar]
- Wang, J.; Wang, H.P.; Wang, X.; Cui, H.; Lu, F. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy. Opt. Laser Technol. 2015, 66, 15–21. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z.; Lin, S.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix scutellariae. Ind. Crops Prod. 2013, 45, 182–190. [Google Scholar] [CrossRef]
- Thiruvenkadam, S.; Izhar, S.; Yoshida, H.; Danquah, M.K.; Harun, R. Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Appl. Energy 2015, 154, 815–828. [Google Scholar] [CrossRef]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; Reina, G.B.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, F.Y.; Koo, S.M.; Matanjun, P.; How, S.E.; Ho, C.W. Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food Bioprod. Process. 2012, 90, 235–242. [Google Scholar] [CrossRef]
- Rangsriwong, P.; Rangkadilok, N.; Satayavivad, J.; Goto, M.; Shotipruk, A. Subcritical water extraction of polyphenolic compounds from Terminalia chebula Retz. fruits. Sep. Purif. Technol. 2009, 66, 51–56. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Bi, H.M.; Liu, C.J. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep. Purif. Technol. 2007, 57, 277–282. [Google Scholar] [CrossRef]
- Herodež, Š.S.; Hadolin, M.; Škerget, M.; Knez, Ž. Solvent extraction study of antioxidants from balm (Melissa officinalis L.) leaves. Food Chem. 2003, 80, 275–282. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; You, J.; Song, C.; Sun, Z.; Lian, X.; Suo, Y. Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species: Optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology. Anal. Chim. Acta 2011, 688, 208–218. [Google Scholar] [PubMed]
- Gu, T.; Chen, Z.; Jiang, X.; Zhou, L.; Liao, Y.; Duan, M.; Wang, H.; Pu, Q. Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromide for mild steel in acid solution: Box–behnken design optimization and mechanism probe. Corros. Sci. 2014, 90, 118–132. [Google Scholar] [CrossRef]
- Kirmizakis, P.; Tsamoutsoglou, C.; Kayan, B.; Kalderis, D. Subcritical water treatment of landfill leachate: Application of response surface methodology. J. Environ. Manag. 2014, 146, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Yang, Y.; Song, X.; Yu, Z. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant. Carbohydr. Polym. 2015, 117, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Vora, C.; Patadia, R.; Mittal, K.; Mashru, R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int. J. Pharm. 2013, 455, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Yang, W.; Jia, Y.; Chen, X.; Gao, Q.; Bi, K. LC-MS determination and pharmacokinetic studies of ursolic acid in rat plasma after administration of the traditional chinese medicinal preparation Lu-Ying extract. Yakugaku Zasshi 2005, 125, 509–515. [Google Scholar] [CrossRef] [PubMed]
Run | Parameters and Levels | Ursolic Acid Yields (mg/g Material) | ||
---|---|---|---|---|
A: Particle Size (mesh) | B: Temperature (°C) | C: Solvent/Solid Ratio (mL/g) | ||
1 | 80 | 160 | 25 | 5.94 |
2 | 100 | 160 | 20 | 4.54 |
3 | 80 | 140 | 30 | 6.08 |
4 | 80 | 160 | 25 | 5.94 |
5 | 60 | 160 | 30 | 5.88 |
6 | 80 | 140 | 20 | 5.24 |
7 | 80 | 180 | 20 | 4.97 |
8 | 100 | 180 | 25 | 4.42 |
9 | 60 | 140 | 25 | 5.37 |
10 | 60 | 180 | 25 | 4.80 |
11 | 100 | 160 | 30 | 5.35 |
12 | 80 | 160 | 25 | 5.92 |
13 | 60 | 160 | 20 | 5.35 |
14 | 80 | 160 | 25 | 5.99 |
15 | 100 | 140 | 25 | 4.29 |
16 | 80 | 160 | 25 | 5.91 |
17 | 80 | 180 | 30 | 5.79 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5.81 | 9 | 0.65 | 230.22 | <0.0001 |
X1 | 0.98 | 1 | 0.98 | 350.42 | <0.0001 |
X2 | 0.12 | 1 | 0.12 | 44.49 | 0.0003 |
X3 | 1.12 | 1 | 1.12 | 399.49 | <0.0001 |
X1X2 | 0.12 | 1 | 0.12 | 43.07 | 0.0003 |
X1X3 | 0.019 | 1 | 0.019 | 6.67 | 0.0363 |
X2X3 | 2.71×10−4 | 1 | 2.71×10−4 | 0.097 | 0.7648 |
X12 | 2.25 | 1 | 2.25 | 803.62 | <0.0001 |
X22 | 1.02 | 1 | 1.02 | 363.75 | <0.0001 |
X32 | 0.022 | 1 | 0.022 | 7.74 | 0.0272 |
Residual | 0.02 | 7 | 2.80×10−3 | - | - |
Lack of fit | 0.016 | 3 | 5.31×10−3 | 5.76 | 0.0619 |
Pure error | 3.69×10−3 | 4 | 9.21×10−4 | - | - |
Total | 5.83 | 16 | - | - | - |
- | R2 = 0.9553 | R2adj = 0.9923 | Coefficient of variation = 0.98 | - | - |
Method | Solvent Type | Organic Solvent Consumption (L/kg Material) | Extraction Time | UA Yield (mg/g Material ) |
---|---|---|---|---|
SWE | Ultrapure water | 0 | 20 min | 5.94 ± 0.03a |
ME | Ethanol | 10 | 12~24 h | 3.49 ± 0.2d |
HRE | Ethanol | 20 | 1~2 h | 4.66 ± 0.1c |
UE | Ethanol | 15 | >20 min | 5.37 ± 0.26b |
MAE | Ethanol | 20 | >15 min | 4.45 ± 0.25c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Xi, X.; Tang, F.; Dai, J.; Liu, J.; Lei, J.; Wang, L. Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa. Appl. Sci. 2017, 7, 187. https://doi.org/10.3390/app7020187
Xiao S, Xi X, Tang F, Dai J, Liu J, Lei J, Wang L. Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa. Applied Sciences. 2017; 7(2):187. https://doi.org/10.3390/app7020187
Chicago/Turabian StyleXiao, Shangzhen, Xingjun Xi, Fei Tang, Juan Dai, Jing Liu, Jiandu Lei, and Luying Wang. 2017. "Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa" Applied Sciences 7, no. 2: 187. https://doi.org/10.3390/app7020187
APA StyleXiao, S., Xi, X., Tang, F., Dai, J., Liu, J., Lei, J., & Wang, L. (2017). Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa. Applied Sciences, 7(2), 187. https://doi.org/10.3390/app7020187