Robust Scale Adaptive Visual Tracking with Correlation Filters
Abstract
:1. Introduction
2. Related Works
3. The CFSA Tracker
3.1. Pipeline of CFSA Tracker
3.2. Generating Candidate Proposals with Modified EdgeBoxes
3.3. Tracking with Kernelized Correlation Filter
3.4. Scale Estimation
3.5. Updating Schema
Algorithm 1. The proposed CFSA tracker. |
Input: Previous target position ; target object model and ; frame Ft Output: Estimated position and scale of the target; Updated target object model and ; 1: if the initial frame then 2: Perform water flow driven MBD algorithm to detect object and determine scales in subsequent frames t are Equation (13) or the size of ; 3: end if 4: Generate object proposals with Equation (2) and get the pool of candidate object proposals ; 5: for each candidate object proposals do 6: Perform KCF tracker on its position using Equation (7); 7: end for 8: Estimate target position by maximizing all responses; 9: Perform water flow driven MBD algorithm to detect object on image patch centered at using Equations (8) to (12); 10: Estimate the target scale using Equation (13) or the size of ; 11: update the target model with Equations (14) and (15); |
4. Experiments
4.1. Experimental Configuration
4.2. Quantitative Comparisons
4.2.1. Overall Performance
4.2.2. Robustness Evaluation
4.2.3. Attribute-Based Performance
4.2.4. Components Analysis
4.2.5. Speed Analysis
4.2.6. Parameter Sensitivity Analysis
4.3. Qualitative Comparisons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Hu, W.; Shen, C.; Zhang, C.; Zhang, Z.; Dick, A.; Hengel, A.V.D. A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 2013, 4, 1–42. [Google Scholar] [CrossRef]
- Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking: An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1442–1468. [Google Scholar] [PubMed]
- Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Suganthan, P.N. Robust visual tracking via co-trained kernelized correlation filters. Pattern Recognit. 2017, 69, 82–93. [Google Scholar] [CrossRef]
- Huang, Z.; Ji, Y. Robust and efficient visual tracking under illumination changes based on maximum color difference histogram and min-max-ratio metric. J. Electron. Imaging 2013, 22, 6931–6946. [Google Scholar]
- Jeong, S.; Paik, J. Partial Block Scheme and Adaptive Update Model for Kernelized Correlation Filters-Based Object Tracking. Appl. Sci. 2018, 8, 1349. [Google Scholar] [CrossRef]
- Hu, Z.; Xie, R.; Wang, M.; Sun, Z. Midlevel cues mean shift visual tracking algorithm based on target-background saliency confidence map. Multimed. Tools Appl. 2017, 1, 21265–21280. [Google Scholar] [CrossRef]
- Ross, D.A.; Lim, J.; Lin, R.S.; Yang, M.H. Incremental learning for robust visual tracking. Int. J. Comput. Vis. 2008, 77, 125–141. [Google Scholar] [CrossRef]
- Zhong, W.; Lu, H.; Yang, M.H. Robust object tracking via sparsity-based collaborative model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1838–1845. [Google Scholar]
- Jia, X.; Lu, H.; Yang, M.H. Visual tracking via coarse and fine structural local sparse appearance models. IEEE Trans. Image Process. 2016, 25, 4555–4564. [Google Scholar] [CrossRef] [PubMed]
- Babenko, B.; Yang, M.H.; Belongie, S. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1619–1632. [Google Scholar] [CrossRef] [PubMed]
- Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2096–2109. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, S.; Yan, Y. Robust visual tracking via online semi-supervised co-boosting. Multimed. Syst. 2016, 22, 297–313. [Google Scholar] [CrossRef]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 702–715. [Google Scholar]
- Danelljan, M.; Khan, F.S.; Felsberg, M.; Weijer, J.V.D. Adaptive color attributes for real-time visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1090–1097. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Tao, W.; Han, S. Visual object tracking via enhanced structural correlation filter. Inf. Sci. 2017, 394, 232–245. [Google Scholar] [CrossRef]
- Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Adaptive correlation filters with long-term and short-term memory for object tracking. Int. J. Comput. Vis. 2018, 126, 771–796. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, G.S.; Lu, Q.; Shen, W.; Zhang, L. Visual object tracking by correlation filters and online learning. ISPRS J. Photogr. Remote Sens. 2017, 140, 77–89. [Google Scholar] [CrossRef]
- Danelljan, M.; Häger, G.; Khan, F.S. Accurate scale estimation for robust visual tracking. In Proceedings of the British Machine Vision Conference (BMVC), Nottingham, UK, 1–5 September 2014; pp. 65.1–65.11. [Google Scholar]
- Bai, B.; Zhong, B.; Ouyang, G.; Wang, P.; Liu, X.; Chen, Z.; Wang, C. Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues. Neurocomputing 2018, 286, 109–120. [Google Scholar] [CrossRef]
- Liu, T.; Wang, G.; Yang, Q. Real-time part-based visual tracking via adaptive correlation filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4902–4912. [Google Scholar]
- Yang, L.; Jiang, P.; Wang, F.; Wang, X. Robust real-time visual object tracking via multi-scale fully convolutional Siamese networks. Multimed. Tools Appl. 2018, 77, 22131–22143. [Google Scholar] [CrossRef]
- Zitnick, C.L.; Dollar, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 391–405. [Google Scholar]
- Huang, X.; Zhang, Y. Water flow driven salient object detection at 180 fps. Pattern Recognit. 2018, 76, 95–107. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 254–265. [Google Scholar]
- Rapuru, M.K.; Kakanuru, S.; Venugopal, P.M.; Mishra, D.; Subrahmanyam, G.R.K.S. Correlation based tracker level fusion for robust visual tracking. IEEE Trans. Image Process. 2017, 26, 4832–4842. [Google Scholar] [CrossRef] [PubMed]
- Carreira, J.; Sminchisescu, C. Constrained parametric min-cuts for automatic object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 3241–3248. [Google Scholar]
- Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Cheng, M.M.; Zhang, Z.; Lin, W.Y.; Torr, P. BING: Binarized normed gradients for objectness estimation at 300 fps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3286–3293. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Galteri, L.; Seidenari, L.; Bertini, M.; Bimbo, A.D. Spatio-temporal closed-loop object detection. IEEE Trans. Image Process. 2017, 26, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Chen, J.; Ye, Q. Deep contour and symmetry scored object proposal. Pattern Recognit. Lett. 2018, in press. [Google Scholar] [CrossRef]
- Zhu, G.; Porikli, F.; Li, H. Beyond local search: Tracking objects everywhere with instance-specific proposals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 943–951. [Google Scholar]
- Liang, P.; Pang, Y.; Liao, C.; Mei, X.; Ling, H. Adaptive objectness for object tracking. IEEE Signal Process. Lett. 2016, 23, 949–953. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, H. Visual tracking based on edge field with object proposal association. Image Vis. Comput. 2018, 69, 22–32. [Google Scholar] [CrossRef]
- Meshgi, K.; Mirzaei, M.S.; Oba, S. Information-maximizing sampling to promote tracking-by-detection. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2700–2704. [Google Scholar]
- Huang, D.; Luo, L.; Chen, Z.; Wen, M.; Zhang, C. Applying detection proposals to visual tracking for scale and aspect ratio adaptability. Int. J. Comput. Vis. 2017, 122, 524–541. [Google Scholar] [CrossRef]
- Zitnick, C.L. Structured forests for fast edge detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 1841–1848. [Google Scholar]
- He, Z.; Fan, Y.; Zhuang, J.; Dong, Y.; Bai, H.L. Correlation filters with weighted convolution responses. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1992–2000. [Google Scholar]
- Strand, R.; Ciesielski, K.C.; Malmberg, F.; Saha, P.K. The minimum barrier distance. Comput. Vis. Image Underst. 2013, 117, 429–437. [Google Scholar] [CrossRef]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X. Visual tracking via adaptive structural local sparse appearance model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1822–1829. [Google Scholar]
- Zhong, W.; Lu, H.; Yang, M.H. Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 2014, 23, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning background-aware correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1144–1152. [Google Scholar]
- Yang, M.; Wu, Y.; Hua, G. Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
CFSA | SAMF | DSST | KCF | CSK | SCM | MIL | ASLA | TLD | Struck | |
---|---|---|---|---|---|---|---|---|---|---|
BC-21 | 0.734 | 0.715 | 0.674 | 0.666 | 0.585 | 0.578 | 0.456 | 0.496 | 0.428 | 0.585 |
DEF-19 | 0.901 | 0.811 | 0.657 | 0.758 | 0.476 | 0.586 | 0.455 | 0.445 | 0.512 | 0.521 |
FM-17 | 0.648 | 0.657 | 0.513 | 0.611 | 0.381 | 0.333 | 0.396 | 0.253 | 0.551 | 0.604 |
IV-25 | 0.788 | 0.716 | 0.73 | 0.662 | 0.481 | 0.594 | 0.349 | 0.517 | 0.537 | 0.558 |
LR-4 | 0.613 | 0.523 | 0.497 | 0.427 | 0.411 | 0.305 | 0.171 | 0.156 | 0.349 | 0.545 |
MB-12 | 0.637 | 0.632 | 0.544 | 0.619 | 0.342 | 0.339 | 0.357 | 0.278 | 0.518 | 0.551 |
OCC-29 | 0.893 | 0.868 | 0.706 | 0.692 | 0.5 | 0.64 | 0.427 | 0.46 | 0.563 | 0.564 |
IPR-31 | 0.803 | 0.735 | 0.768 | 0.727 | 0.547 | 0.597 | 0.453 | 0.511 | 0.584 | 0.617 |
OPR-39 | 0.826 | 0.788 | 0.735 | 0.704 | 0.54 | 0.618 | 0.466 | 0.518 | 0.596 | 0.597 |
OV-6 | 0.735 | 0.664 | 0.511 | 0.637 | 0.379 | 0.429 | 0.393 | 0.333 | 0.576 | 0.539 |
SV-28 | 0.771 | 0.753 | 0.738 | 0.658 | 0.503 | 0.672 | 0.471 | 0.552 | 0.606 | 0.639 |
All | 0.841 | 0.801 | 0.739 | 0.711 | 0.545 | 0.649 | 0.475 | 0.532 | 0.608 | 0.656 |
CFSA | SAMF | DSST | KCF | CSK | SCM | MIL | ASLA | TLD | Struck | |
---|---|---|---|---|---|---|---|---|---|---|
BC-21 | 0.532 | 0.539 | 0.517 | 0.522 | 0.421 | 0.45 | 0.373 | 0.408 | 0.345 | 0.458 |
DEF-19 | 0.668 | 0.624 | 0.505 | 0.574 | 0.343 | 0.448 | 0.369 | 0.372 | 0.378 | 0.393 |
FM-17 | 0.516 | 0.507 | 0.428 | 0.487 | 0.316 | 0.296 | 0.326 | 0.247 | 0.417 | 0.462 |
IV-25 | 0.577 | 0.529 | 0.561 | 0.498 | 0.369 | 0.473 | 0.311 | 0.429 | 0.399 | 0.428 |
LR-4 | 0.455 | 0.386 | 0.408 | 0.363 | 0.35 | 0.279 | 0.153 | 0.157 | 0.309 | 0.372 |
MB-12 | 0.507 | 0.495 | 0.455 | 0.503 | 0.305 | 0.298 | 0.282 | 0.258 | 0.404 | 0.433 |
OCC-29 | 0.614 | 0.625 | 0.531 | 0.523 | 0.365 | 0.487 | 0.335 | 0.376 | 0.402 | 0.413 |
IPR-31 | 0.577 | 0.533 | 0.563 | 0.535 | 0.399 | 0.458 | 0.34 | 0.425 | 0.416 | 0.444 |
OPR-39 | 0.597 | 0.569 | 0.535 | 0.515 | 0.386 | 0.47 | 0.35 | 0.422 | 0.42 | 0.432 |
OV-6 | 0.611 | 0.576 | 0.462 | 0.533 | 0.349 | 0.361 | 0.382 | 0.312 | 0.457 | 0.459 |
SV-28 | 0.546 | 0.521 | 0.546 | 0.469 | 0.35 | 0.518 | 0.335 | 0.452 | 0.421 | 0.425 |
All | 0.617 | 0.587 | 0.554 | 0.534 | 0.398 | 0.499 | 0.359 | 0.434 | 0.437 | 0.474 |
CFSA | SAMF | DSST | KCF | CSK | SCM | MIL | ASLA | TLD | Struck | |
---|---|---|---|---|---|---|---|---|---|---|
BC-31 | 0.751 | 0.722 | 0.694 | 0.692 | 0.587 | 0.592 | 0.409 | 0.531 | 0.464 | 0.56 |
DEF-44 | 0.747 | 0.677 | 0.542 | 0.611 | 0.458 | 0.546 | 0.458 | 0.483 | 0.485 | 0.536 |
FM-38 | 0.699 | 0.705 | 0.539 | 0.62 | 0.403 | 0.322 | 0.358 | 0.252 | 0.564 | 0.634 |
IV-37 | 0.773 | 0.71 | 0.725 | 0.715 | 0.488 | 0.61 | 0.34 | 0.553 | 0.562 | 0.559 |
LR-9 | 0.795 | 0.756 | 0.649 | 0.671 | 0.423 | 0.761 | 0.532 | 0.72 | 0.627 | 0.674 |
MB-28 | 0.711 | 0.685 | 0.551 | 0.597 | 0.368 | 0.278 | 0.284 | 0.249 | 0.541 | 0.604 |
OCC-49 | 0.749 | 0.737 | 0.589 | 0.629 | 0.434 | 0.567 | 0.419 | 0.483 | 0.534 | 0.54 |
IPR-52 | 0.807 | 0.729 | 0.735 | 0.703 | 0.521 | 0.552 | 0.479 | 0.518 | 0.616 | 0.644 |
OPR-63 | 0.783 | 0.746 | 0.646 | 0.674 | 0.487 | 0.57 | 0.479 | 0.528 | 0.572 | 0.599 |
OV-14 | 0.709 | 0.685 | 0.441 | 0.505 | 0.281 | 0.445 | 0.388 | 0.361 | 0.475 | 0.484 |
SV-64 | 0.749 | 0.726 | 0.632 | 0.636 | 0.448 | 0.558 | 0.44 | 0.529 | 0.564 | 0.598 |
All | 0.791 | 0.766 | 0.678 | 0.697 | 0.522 | 0.577 | 0.446 | 0.52 | 0.598 | 0.644 |
CFSA | SAMF | DSST | KCF | CSK | SCM | MIL | ASLA | TLD | Struck | |
---|---|---|---|---|---|---|---|---|---|---|
BC-31 | 0.544 | 0.542 | 0.519 | 0.506 | 0.423 | 0.474 | 0.347 | 0.435 | 0.358 | 0.437 |
DEF-44 | 0.549 | 0.497 | 0.419 | 0.431 | 0.34 | 0.404 | 0.351 | 0.367 | 0.34 | 0.388 |
FM-38 | 0.541 | 0.536 | 0.441 | 0.46 | 0.339 | 0.304 | 0.299 | 0.25 | 0.434 | 0.479 |
IV-37 | 0.588 | 0.542 | 0.561 | 0.475 | 0.371 | 0.493 | 0.29 | 0.443 | 0.415 | 0.427 |
LR-9 | 0.485 | 0.456 | 0.37 | 0.29 | 0.224 | 0.478 | 0.248 | 0.47 | 0.346 | 0.313 |
MB-28 | 0.534 | 0.538 | 0.463 | 0.459 | 0.323 | 0.282 | 0.258 | 0.245 | 0.436 | 0.479 |
OCC-49 | 0.55 | 0.541 | 0.449 | 0.443 | 0.335 | 0.435 | 0.328 | 0.384 | 0.368 | 0.398 |
IPR-52 | 0.567 | 0.527 | 0.52 | 0.47 | 0.385 | 0.417 | 0.348 | 0.406 | 0.433 | 0.459 |
OPR-63 | 0.562 | 0.534 | 0.47 | 0.45 | 0.356 | 0.433 | 0.351 | 0.411 | 0.39 | 0.428 |
OV-14 | 0.507 | 0.514 | 0.366 | 0.404 | 0.267 | 0.352 | 0.353 | 0.308 | 0.353 | 0.377 |
SV-64 | 0.511 | 0.504 | 0.466 | 0.396 | 0.322 | 0.433 | 0.313 | 0.412 | 0.387 | 0.403 |
All | 0.576 | 0.559 | 0.512 | 0.478 | 0.386 | 0.45 | 0.335 | 0.413 | 0.427 | 0.466 |
CFSA | SAMF | DSST | KCF | CSK | SCM | MIL | ASLA | TLD | Struck | |
---|---|---|---|---|---|---|---|---|---|---|
Speed (fps) | 18.5 | 8 | 24 | 149 | 269 | 0.4 | 28 | 7.5 | 22 | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, B. Robust Scale Adaptive Visual Tracking with Correlation Filters. Appl. Sci. 2018, 8, 2037. https://doi.org/10.3390/app8112037
Li C, Yang B. Robust Scale Adaptive Visual Tracking with Correlation Filters. Applied Sciences. 2018; 8(11):2037. https://doi.org/10.3390/app8112037
Chicago/Turabian StyleLi, Chunbao, and Bo Yang. 2018. "Robust Scale Adaptive Visual Tracking with Correlation Filters" Applied Sciences 8, no. 11: 2037. https://doi.org/10.3390/app8112037
APA StyleLi, C., & Yang, B. (2018). Robust Scale Adaptive Visual Tracking with Correlation Filters. Applied Sciences, 8(11), 2037. https://doi.org/10.3390/app8112037