Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Computational Studies
2.2.1. Geometry Optimization
2.2.2. Global Reactivity Descriptors
- The values of Frontier molecular orbitals energies (FMOs) namely EHOMO and ELUMO as well as their neighboring orbitals are negative, indicating the stability of the synthesized antipyrinyl-thiazole derivatives [41].
- Based on FMOs theory, the reaction occurs with maximum overlap between the HOMO on one molecule and the LUMO on the other and this is a controlling factor in many reactions. Therefore, orbitals of the derivative with the largest value of molecular orbital coefficients may be considered as the sites of electron donation. Thus, the HOMO level is mostly localized on N(2), N(3), S(17), C(16), C(18), C(19), C(4), and O(14) atoms, see Figure 1 and Figure 2, indicating the most preferable sites for attack of the incoming nucleophile.
- It is well documented that the smaller the energy gap (EHOMO − ELUMO) of a molecule the greater the reactivity, polarizability, and readiness to offer electrons to an acceptor and the molecule is considered to be “soft”, which in turn affects its biological activity. Thus, the title compounds follow the order: 10b > 10c > 6 > 7a > 7b > 10a > 5 > 14 > 4 > 9 > 2 > 12. This means that compound 10b possesses the smallest energy gap and the highest electrophilicty index (ω = 30.864) among all newly synthesized thiazoles and, therefore, has the highest softness, polarizability, and reactivity [13].
- Furthermore, it is obvious that the values of the binding energy increase for the new 4-antipyrinylthiazole derivatives (except thiazole compound 9) when compared to that of the starting compound (i.e., 4-antipyrinyl-2-chloroacetamidothiazole), revealing higher stability of the newly-formed thiazoles. The newly synthesized thiazoles can be arranged according to stability as: 7b > 7a > 10a > 5 > 4 > 10b > 6 > 10c > 12 > 14 > 2 > 9.
2.3. Antioxidant Activity
3. Materials and Methods
3.1. General Methods
3.2. Preparation of Ethyl 2-[(2-((4-antipyrinylthiazol-2-yl)amino)-2-oxoethyl)-thio]acetate (2)
3.3. Preparation of N-(4-antipyrinylthiazol-2-yl)-2-((3-cyano-4,6-dimethylpyridin-2-yl)thio)-acetamide (4)
3.4. Synthesis of 3-amino-N-(4-antipyrinylthiazol-2-yl)-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide (5)
3.5. Synthesis of 4-antipyrinyl-2-chloroacetamido-5-(4-sulfamoylphenylazo)thiazole (6)
3.6. Preparation of 2-substituted-N-(5-((4-sulfamoylphenyl)azo)thiazol-2-yl)acetamide Derivatives 7
3.7. Preparation of 2-((4-antipyrinylthiazol-2-yl)imino)thiazolidin-4-one (9)
3.8. Synthesis of 2-((4-antipyrinylthiazol-2-yl)imino)-5-arylidenethiazolidin-4-one Derivatives 10a–c
3.9. Synthesis of 2-amino-1-(4-antipyrinylthiazol-2-yl)-3-cyano-4,5-dihydro-5-oxo-1H-pyrrole (12)
3.10. Synthesis of N-(4-antipyrinylthiazol-2-yl)benzofuran-2-carboxamide (14)
3.11. Anti-Oxidant Activity Screening Assay—ABTS Method
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Mahle, F.; Guimarães, T.R.; Meira, A.V.; Corrêa, R.; Cruz, R.B.; Cruz, A.B.; Nunes, R.J.; Cechinel-Filho, V.; Campos-Buzzi, F. Synthesis and biological evaluation of N-antipyrine-4-substituted amino-3-chloromaleimide derivatives. Eur. J. Med. Chem. 2011, 45, 4761–4768. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.M.; Saleh, N.M.; Elhady, H.A. Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents. Eur. J. Med. Chem. 2011, 46, 4566–4572. [Google Scholar] [CrossRef] [PubMed]
- Fadda, A.A.; Bondock, S.; Rabie, R.; Etman, H.A. Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur. J. Med. Chem. 2008, 43, 2122–2129. [Google Scholar]
- Filho, V.C.; Correa, R.; Vaz, Z.; Calixto, J.B.; Nunes, R.J.; Pinheiro, T.R.; Andricopulo, A.D.; Yunes, R.A. Further studies on analgesic activity of cyclic imides. Farmaco 1998, 53, 55–57. [Google Scholar] [CrossRef]
- Ismail, M.M.F.; Ammar, Y.A.; El-Zahaby, H.S.A.; Eisa, S.I.; Barakat, S.E. Synthesis of novel 1-pyrazolylpyridin-2-ones as potential anti-inflammatory and analgesic agents. Arch. Pharm. Life Sci. 2007, 340, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.A.; Gouda, M.A.; Harmal, A.N.; Khalil, A.M. Synthesis, antitumor, cytotoxic and antioxidant evaluation of some new pyrazolotriazines attached to antipyrine moiety. Eur. J. Med. Chem. 2012, 56, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Gomha, S.M.; Badrey, M.G.; El-Idreesy, T.T.; Eldebss, T.M.A. Novel 4-heteroaryl-antipyrines: Synthesis, molecular docking, and evaluation as potential anti-breast cancer agents. J. Heterocycl. Chem. 2018, 55, 2408–2416. [Google Scholar] [CrossRef]
- Costa, D.; Marques, A.P.; Reis, R.L.; Lima, J.L.F.C.; Fernandes, E. Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radic. Biol. Med. 2006, 40, 632–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanaraman, B.; Sohnle, P.G. Generation of free radical intermediates from foreign compounds by neutrophil-derived oxidants. J. Clin. Investig. 1985, 75, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem. 2015, 97, 911–927. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; Ortuso, F.; Petzer, A.; Bagetta, D.; De Monte, C.; Secci, D.; De Vita, D.; Guglielmi, P.; Zengin, G.; Aktumsek, A.; et al. Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. Eur. J. Med. Chem. 2018, 143, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hafez, N.A.; Elsayed, M.A.; El-Shahawi, M.M.; Awad, G.E.A.; Ali, K.A. Synthesis and antimicrobial activity of new thiazolidine-based heterocycles as rhodanine analogues. J. Heterocycl. Chem. 2018, 55, 685–691. [Google Scholar] [CrossRef]
- Abu-Melha, S. Design, synthesis and DFT/DNP modeling study of new 2-amino-5-arylazothiazole derivatives as potential antibacterial agents. Molecules 2018, 23, 434. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Fahmy, H.T.Y.; Rostom, S.A.F.; Bekhit, A. Synthesis and biological evaluation of some thiazolylpyrazole derivatives as dual anti-inflammatory antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 6027–6038. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; Kamel, M.M.; Anwar, M.M.; Khedr, M.; Syam, Y.N. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1′-cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2010, 45, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Turan-Zitouni, G.; Kaplancikli, Z.A.; Ozdemir, A. Synthesis and antituberculosis activity of some N-pyridyl-N′-thiazolylhydrazine derivatives. Eur. J. Med. Chem. 2010, 45, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem. 2009, 44, 4199–4210. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kumar, S.; Vishwakarma, P.; Sharma, M.; Saxena, K.K.; Kumar, A. Synthesis and antipsychotic and anticonvulsant activity of some new substituted oxa/thiadiazolylazetidinonyl/thiazolidinonylcarbazoles. Eur. J. Med. Chem. 2010, 45, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Lata, S.; Saxena, K.K.; Srivastava, V.K.; Kumar, A. Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur. J. Med. Chem. 2006, 41, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Zhang, G.; Lv, Y.; Zhang, N.; Gong, P. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent. Eur. J. Med. Chem. 2011, 46, 3509–3518. [Google Scholar] [CrossRef] [PubMed]
- Koppireddi, S.; Chilaka, D.R.K.; Avula, S.; Komsani, J.R.; Kotamraju, S.; Yadla, R. Synthesis and anticancer evaluation of 3-aryl-6-phenylimidazo[2,1-b]thiazoles. Bioorg. Med. Chem. Lett. 2014, 24, 5428–5431. [Google Scholar] [CrossRef] [PubMed]
- De Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.D.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018, 144, 874–886. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.-C.; Zhou, C.-F.; Chen, J.; Liu, P.-G.; Wang, K.-R.; Mao, W.-J.; Li, H.-Q.; Yang, Y.; Xiong, J.; Zhu, H.-L. Design, synthesis and biological evaluation of thiazolidinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem. 2010, 18, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Laine, L.; Kivitz, A.J.; Bello, A.E.; Grahn, A.Y.; Schiff, M.H.; Taha, A.S. Double-blind randomized trials of single-tablet ibuprofen/high-dose famotidine vs. ibuprofen alone for reduction of gastric and duodenal ulcers. Am. J. Gastroenterol. 2012, 107, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.M.; Chremos, A.N.; Collen, M.J.; Mcarthur, K.E.; Cherner, J.A.; Maton, P.N.; Ciarleglio, C.A.; Cornelius, M.J.; Gardner, J.D.; Jensen, R.T. Famotidine, a New, Potent, Long-Acting Histamine H2-Receptor Antagonist: Comparison with Cimetidine and Ranitidine in the Treatment of Zollinger-Ellison Syndrome. Gastroenterology 1985, 88, 1026–1033. [Google Scholar] [CrossRef]
- Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; et al. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy 2008, 54, 245–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guay, D.R.P. Cefdinir: An advanced-generation, broad-spectrum oral cephalosporin. Clin. Ther. 2002, 24, 473–489. [Google Scholar] [CrossRef]
- Yapati, H.; Devineni, S.R.; Chirumamilla, S.; Kalluru, S. Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo[d]thiazol-2-yl) thiourea. J. Chem. Sci. 2016, 128, 43–51. [Google Scholar] [CrossRef]
- Shubakara, K.; Umesha, K.B.; Srikantamurthy, N.; Chethan, J. Antioxidant and DNA damage inhibition activities of 4-Aryl-N-(4-aryl-thiazol-2-yl)-5,6-dihydro-4H-1,3,4-oxadiazine-2-carboxamides. J. Chem. Sci. 2014, 126, 1913–1921. [Google Scholar] [CrossRef]
- Kaupp, G.; Amer, F.A.; Metwally, M.A.; Abdel-Latif, E. Versatile 2-aminothiazoles, building blocks for highly functionalised heterocycles. J. Heterocycl. Chem. 2003, 40, 963–971. [Google Scholar] [CrossRef]
- Subbotina, J.O.; Fabian, W.M.F.; Tarasov, E.V.; Volkova, N.N.; Bakulev, V.A. Synthetic and theoretical aspects of new Dimroth rearrangement of 6-aminopyran-2-ones to 6-hydroxypyridin-2-ones via carbamoyl ketenes. Eur. J. Org. Chem. 2005, 2914–2923. [Google Scholar] [CrossRef]
- Vicini, P.; Geronikaki, A.; Anastasia, K.; Incerti, M.; Zani, F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg. Med. Chem. 2006, 14, 3859–3864. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, H.; Ibrahim, H.M. 4-Thiazolidinones in heterocyclic synthesis: Synthesis of novel enaminones, azolopyrimidines and 2-arylimino-5-arylidene-4-thiazolidinones. Molecules 2012, 17, 6362–6385. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 15, 155125–155129. [Google Scholar] [CrossRef]
- Accelrys Software Inc. Materials Studio, Version 6.0; Accelrys Software Inc.: San Diego, CA, USA, 2011.
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; John Wiley: New York, NY, USA, 1986. [Google Scholar]
- Kessi, A.; Delley, B. Density functional crystal vs. cluster models as applied to zeolites. Int. J. Quantum Chem. 1998, 68, 135–144. [Google Scholar]
- Matveev, A.; Staufer, M.; Mayer, M. Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. Int. J. Quantum Chem. 1999, 75, 863–873. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A 2007, 111, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- El-Gammal, O.A.; Bekheit, M.M.; El-Brashy, S.A. Synthesis, characterization and in vitro antimicrobial studies of Co (II), Ni (II) and Cu (II) complexes derived from macrocyclic compartmental ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, C.; Lissi, E.A. Reaction of 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) derived radicals with hydroperoxides. Kinetics and mechanism. Int. J. Chem. Kinet. 1998, 30, 565–570. [Google Scholar] [CrossRef]
- El-Gazzar, A.B.A.; Youssef, M.M.; Youssef, A.M.S.; Abu-Hashem, A.A.; Badria, F.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2009, 44, 609–624. [Google Scholar] [CrossRef] [PubMed]
Cpd. No. | HOMO | LUMO | EHOMO − ELUMO | χ | μ | η | S | ω | σ | Binding Energy * |
---|---|---|---|---|---|---|---|---|---|---|
2 | −3.090 | −1.705 | −1.385 | 2.397 | −2.397 | 0.692 | 0.722 | 4.150 | 1.444 | −5683.573 |
4 | −3.389 | −2.232 | −1.157 | 2.810 | −2.810 | 0.578 | 0.864 | 6.827 | 1.728 | −6312.004 |
5 | −3.274 | −2.243 | −1.031 | 2.758 | −2.758 | 0.515 | 0.969 | 7.380 | 1.939 | −6356.229 |
6 | −3.839 | −3.017 | −0.822 | 3.428 | −3.428 | 0.411 | 1.216 | 14.295 | 2.433 | −6204.837 |
7a | −3.759 | −2.934 | −0.825 | 3.346 | −3.346 | 0.412 | 1.212 | 13.574 | 2.424 | −7817.104 |
7b | −3.852 | −3.019 | −0.833 | 3.435 | −3.435 | 0.416 | 1.200 | 14.168 | 2.400 | −7859.676 |
9 | −3.329 | −2.158 | −1.171 | 2.743 | −2.743 | 0.585 | 0.853 | 6.427 | 1.707 | −4635.508 |
10a | −3.533 | −2.612 | −0.921 | 3.072 | −3.072 | 0.460 | 1.085 | 10.250 | 2.171 | −6444.896 |
10b | −4.098 | −3.616 | −0.482 | 3.857 | −3.857 | 0.241 | 2.074 | 30.864 | 4.149 | −6271.616 |
10c | −3.768 | −2.966 | −0.802 | 3.367 | −3.367 | 0.401 | 1.246 | 14.135 | 2.493 | −6013.436 |
12 | −5.005 | −2.237 | −2.768 | 3.621 | −3.621 | 1.384 | 0.361 | 4.736 | 0.722 | −5973.095 |
14 | −3.506 | −2.456 | −1.050 | 2.981 | −2.981 | 0.525 | 0.952 | 8.463 | 1.904 | −5768.652 |
Compound Number | Absorbance | ABTS Inhibition (%) |
---|---|---|
Control of ABTS | 0.540 | 0 |
l-Ascorbic acid | 0.060 | 88.88 |
2 | 0.306 | 43.33 |
4 | 0.274 | 49.25 |
5 | 0.219 | 59.44 |
6 | 0.144 | 73.33 |
7a | 0.118 | 78.14 |
7b | 0.223 | 58.70 |
9 | 0.211 | 60.92 |
10a | 0.182 | 66.29 |
10b | 0.077 | 85.74 |
10c | 0.089 | 83.51 |
12 | 0.347 | 35.74 |
14 | 0.212 | 60.74 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Melha, S. Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles. Appl. Sci. 2018, 8, 2128. https://doi.org/10.3390/app8112128
Abu-Melha S. Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles. Applied Sciences. 2018; 8(11):2128. https://doi.org/10.3390/app8112128
Chicago/Turabian StyleAbu-Melha, Sraa. 2018. "Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles" Applied Sciences 8, no. 11: 2128. https://doi.org/10.3390/app8112128
APA StyleAbu-Melha, S. (2018). Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles. Applied Sciences, 8(11), 2128. https://doi.org/10.3390/app8112128