Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine
Abstract
:1. Introduction
2. Design Process
3. Preliminary Design
3.1. Rotor Preliminary Design
3.2. Nozzle Preliminary Design
3.3. Volute Design
3.4. Mean-Line Analysis
3.5. Preliminary Design Outputs
4. Detailed Design of Rotor
5. Numerical Analysis
5.1. Grid Generation
5.2. CFD Validation
5.3. CFD Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Area ( | |
Sound speed, the location of maximum camber along the chord | |
Blade width passage (mm), maximum camber | |
Absolute Velocity (m/sec) | |
Spouting Velocity (m/sec) | |
Specific heats at constant pressure and volume (J/(kg·K)) | |
Nozzle chord | |
Location of maximum thickness along the chord | |
Diameter (mm) | |
Total enthalpy (J/kg) | |
Mass flow rate (kg/sec) | |
Number of rotor/nozzle and splitter blades | |
Specific Speed | |
Volume flow rate | |
Throat width (mm) | |
Pressure (Pa) | |
Pressure Ratio | |
Radius (mm) | |
Reynolds number | |
Blade pitch (mm) | |
Temperature (K) | |
Temperature ratio | |
Blade thickness (mm) | |
Blade local velocity (m/sec) | |
Relative Velocity (m/sec) | |
X-coordinate of nozzle airfoil | |
Loss coefficient | |
Y-coordinate of nozzle airfoil | |
Axial dimension | |
Greek Symbols | |
Absolute flow angle (deg.) | |
Blade angle (deg.) | |
Specific heat ratio | |
Total dimensionless boundary layer displacement thickness | |
Efficiency | |
Total dimensionless boundary layer momentum thickness | |
Boundary layer momentum thickness (mm), polar angle (deg.) | |
Velocity ratio | |
Density (kg/sec) | |
Mean surface angle with axial direction (deg.) | |
Angular Velocity (rad/sec) | |
Subscripts | |
State point in the turbine | |
Average of a value | |
Blade loading | |
Clearance | |
Hub-to-shroud | |
Incidence | |
Isentropic | |
Hub | |
Meridional component | |
Maximum value | |
Profile loss | |
Rotor | |
Reference value | |
Shroud | |
Total condition | |
Total-to-static | |
Total-to-total | |
Tangential component/circumferentially | |
Parameter corresponding to sonic flow | |
Superscript | |
Optimum |
References
- Conceição, S.T.; Zaparoli, E.L.; Turcio, W.H. Thermodynamic Study of Aircraft Air Conditioning Air Cycle Machine: 3-wheel × 4-wheel. SAE Tech. Paper 2007. [Google Scholar]
- Santos, A.P.; Andrade, C.R.; Zaparoli, E.L. A Thermodynamic Study of Air Cycle Machine for Aeronautical Applications. Int. J. Thermodyn. 2014, 17, 117–225. [Google Scholar] [CrossRef]
- Simpson, A.T.; Spence, S.W.; Watterson, J.K. A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines. J. Turbomach. 2009, 131, 031010. [Google Scholar] [CrossRef]
- Rohlik, H. Analytical determination of radial inflow turbine design geometry for maximum efficiency. In National Aeronautics and Space Administration; NASA Lewis Research Center: Cleveland, OH, USA, 1969; p. 4384. [Google Scholar]
- Feng, Z.; Deng, Q.; Li, J. Aerothermodynamic Design and Numerical Simulation of Radial Inflow Turbine Impeller for a 100kW Microturbine. Am. Soc. Mech. Eng. 2005, 1, 873–880. [Google Scholar]
- Zheng, Y.; Hu, D.; Cao, Y.; Dai, Y. Preliminary design and off-design performance analysis of an Organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method. Appl. Therm. Eng. 2017, 112, 25–37. [Google Scholar] [CrossRef]
- Aungier, R.H. Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis; ASME: New York, NY, USA, 2006; pp. 10016–15990. [Google Scholar]
- Rohlik, H.E. Turbine Design and Application: Radial-Inflow Turbine; NASA: Washington, DC, USA, 1975; p. 392. [Google Scholar]
- Glassman, A.J. Computer Program for Design Analysis of Radial-Inflow Turbines; NASA-TN-D-8164; NASA: Washington, DC, USA, 1976; p. 66.
- Rodgers, C. Advanced Radial Inflow Turbine Rotor Program: Design and Dynamic Testing; NASA-CR-135080, SOLAR-ER-2519; NASA: Washington, DC, USA, 1976. [Google Scholar]
- Whitfield, A. The Preliminary Design of Radial Inflow Turbines. J. Turbomach. 1990, 112, 50. [Google Scholar] [CrossRef]
- Ventura, C.A.; Jacobs, P.A.; Rowlands, A.S.; Petrie-Repar, P.; Sauret, E. Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach. J. Fluids Eng. 2012, 134, 31102. [Google Scholar] [CrossRef]
- Ebaid, M.S.Y.; Bhinder, F.S.; Khdairi, G.H. A Unified Approach for Designing a Radial Flow Gas Turbine. J. Turbomach. 2003, 125, 598. [Google Scholar] [CrossRef]
- Al Jubori, A.; Daabo, A.; Al-Dadah, R.K.; Mahmoud, S.; Ennil, A.B. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2016, 130, 141–155. [Google Scholar] [CrossRef]
- Sauret, E.; Gu, Y. Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine. Appl. Energy 2014, 135, 202–211. [Google Scholar] [CrossRef]
- Fiaschi, D.; Innocenti, G.; Manfrida, G.; Maraschiello, F. Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 2016, 99, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ren, X.D. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl. Therm. Eng. 2016, 96, 547–554. [Google Scholar] [CrossRef]
- Costall, A.W.; Hernandez, A.G.; Newton, P.J.; Martinez-Botas, R.F. Design methodology for radial turbo expanders in mobile organic Rankine cycle applications. Appl. Energy 2014, 157, 729–743. [Google Scholar] [CrossRef]
- Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation. Appl. Therm. Eng. 2017, 116, 549–583. [Google Scholar] [CrossRef]
- Zhou, A.; Song, J.; Li, X.; Ren, X.; Gu, C. Aerodynamic design and numerical analysis of a radial inflow turbine for the supercritical carbon dioxide Brayton cycle. Appl. Therm. Eng. 2018, 132, 245–255. [Google Scholar] [CrossRef]
- Aungier, R.H. Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis; ASME Press: New York, NY, USA, 2000. [Google Scholar]
- Jones, A.C. Design and Test of a Small, High Pressure Ratio Radial Turbine. J. Turbomach. 1996, 118, 362. [Google Scholar] [CrossRef]
- Aungier, R.H. Axial-Flow Compressors: A Strategy for Aerodynamic Design and Analysis; ASME Press: New York, NY, USA, 2003; pp. 10016–15990. [Google Scholar]
- Watanabe, I.; Ariga, I.; Mashimo, T. Effect of Dimensional Parameters of Impellers on Performance Characteristics of a Radial-Inflow Turbine. J. Eng. Power 1971, 93, 81. [Google Scholar] [CrossRef]
- Simpson, A.; Spence, S.; Watterson, J. Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Inflow Turbine Stators. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air GT2008, Berlin, Germany, 9–13 June 2008; Volume 135, pp. 1495–1505. [Google Scholar]
- Forrest, A.R. Interactive interpolation and approximation by Bézier polynomials. Comput. Des. 1990, 22, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Hiett, G.F.; Johnston, I.H. Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines. Proc. Inst. Mech. Eng. Conf. Proc. 2006, 178, 28–42. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Total inlet temperature | K | 364 |
Total inlet pressure | kPa | 541.822 |
mass flow rate | Kg/sec | 0.217 |
total-to-static pressure ratio | - | 4.85 |
number of rotor revolution | - | 75,000 |
Parameter | Value |
---|---|
0.025 | |
0.012 | |
0.06 | |
0.4 |
Types of Loss | Empirical Correlation |
---|---|
Volute | |
Circumferential distortion loss | |
Nozzle | |
Incidence loss coefficient | |
Rotor | |
Blade loading loss | |
Hub-to-shroud loading loss | |
Incidence loss | |
Clearance loss |
Parameter | Unit | Value |
---|---|---|
Volute | ||
Volute inlet area, | mm2 | 414.8 |
mm | 69.0 | |
Volute discharge radius, | mm | 57.9 |
Nozzle | ||
Nozzle inlet radius, | mm | 55.1 |
Nozzle discharge radius, | mm | 48.8 |
Nozzle exit throat width, | mm | 3.6 |
Nozzle passage width, | mm | 2.9 |
Nozzle inlet blade angle, | deg. | 28.6 |
Nozzle exit blade angle, | deg. | 7.0 |
Number of nozzle blade, | - | 20 |
Rotor | ||
Rotor inlet radius, | mm | 40.6 |
Rotor exit hub radius, | mm | 7.5 |
Rotor exit hub radius, | mm | 21.8 |
Rotor throat width, | mm | 4.7 |
Rotor inlet blade angle, | deg. | 90.0 |
Rotor exit blade angle, | deg. | 45.9 |
Rotor blade thickness, | mm | 1.0 |
Number of rotor blades, | - | 13 |
No. | Azimuth Angle [deg.] | Radius of Center [mm] | Radius of Section [mm] |
---|---|---|---|
1 | 0 | 57.90 | 1.00 |
2 | 30 | 60.93 | 3.03 |
3 | 60 | 62.23 | 4.33 |
4 | 90 | 63.24 | 5.34 |
5 | 120 | 64.11 | 6.21 |
6 | 150 | 64.88 | 6.98 |
7 | 180 | 65.58 | 7.68 |
8 | 210 | 66.23 | 8.34 |
9 | 240 | 66.85 | 8.95 |
10 | 270 | 67.43 | 9.53 |
11 | 300 | 67.98 | 10.09 |
12 | 330 | 68.51 | 10.62 |
13 | 360 | 69.02 | 11.13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi Noughabi, A.; Sammak, S. Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine. Appl. Sci. 2018, 8, 2207. https://doi.org/10.3390/app8112207
Karimi Noughabi A, Sammak S. Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine. Applied Sciences. 2018; 8(11):2207. https://doi.org/10.3390/app8112207
Chicago/Turabian StyleKarimi Noughabi, Amir, and Shervin Sammak. 2018. "Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine" Applied Sciences 8, no. 11: 2207. https://doi.org/10.3390/app8112207
APA StyleKarimi Noughabi, A., & Sammak, S. (2018). Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine. Applied Sciences, 8(11), 2207. https://doi.org/10.3390/app8112207