Rumex japonicus Houtt. Ethanol Extract and Its Active Component on Prevention of Dyslipidemia and Hyperglycemia in Diet-Induced C57BL/6J Obese Mice
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Substances
2.1.1. Isolation of Nepodin
2.1.2. Preparation of Nepodin-Enrich Rumex Japonicus Houtt. Ethanol Extract
2.2. Animal and Diets
2.3. Sample Collection and Preparation
2.4. Biochemistry Analysis
2.4.1. Plasma Lipid Contents
2.4.2. Hepatic Lipid Contents
2.4.3. Insulin Resistance Biomarkers
2.5. Histological Analysis and Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Body Weight, Food Efficiency Ratio (FER), Adipose Tissue Weights and Epididymal White Adipose Tissue Morphology
3.2. Plasma Lipid Profiles
3.3. Liver Weight, Hepatic Lipid Profiles and Hepatic Morphology
3.4. Fasting Blood Glucose, Plasma Glucose, Insulin, Glucagon, and C-peptide Levels, Glucose Tolerance, Homeostatin Model Assessment-Insulin Resistance (HOMA-IR) and Pancreatic Immunohistochemistry Analysis
4. Discussion
4.1. Effect of Rumex Japonicus Houtt. Extract and Nepodin on Plasma and Hepatic Lipid Profiles
4.2. Effect of Rumex Japonicus Houtt. Extract and Nepodin on Hyperglycemia and Insulin Resistance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMPK | 5′ AMP-activated protein kinase |
Apo | apolipoprotein |
AUC | area under the graph curve |
BW | body weight |
CHD | coronary heart disease |
FFA | Free fatty acid |
FER | food efficiency ratio |
H&E | haematoxylin and eosin |
HDL-C | high-density lipoprotein cholesterol |
HFD | high-fat diet |
HOMA | homeostasis model assessment |
HPLC | high performance liquid chromatography |
HTR | HDL-C-to-TC ratio |
IPGTT | intraperitoneal glucose tolerance test |
NAFLD | non-alcoholic fatty liver disease |
ND | normal diet |
NE | nepodin |
RU | Rumex japonicus Houtt. ethanol extract |
T2DM | type 2 diabetes mellitus |
TC | total plasma cholesterol |
TG | triglycerides |
WAT | white adipose tissue |
References
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frayn, K.N. Adipose tissue and the insulin resistance syndrome. Proc. Nutr. Soc. 2001, 60, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997, 46, 3–10. [Google Scholar] [CrossRef] [PubMed]
- McGarry, J.D. Glucose-fatty acid interactions in health and disease. Am. J. Clin. Nutr. 1998, 67, S500–S504. [Google Scholar] [CrossRef] [PubMed]
- Hasani-Ranjbar, S.; Nayebi, N.; Larijani, B.; Abdollahi, M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J. Gastroenterol. 2009, 15, 3073–3085. [Google Scholar] [CrossRef] [PubMed]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Antioxidant and antibacterial activities of Rumex japonicus HOUTT. Aerial parts. Biol. Pharm. Bull. 2005, 28, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Takamiyagi, A.; Ramzi, S.T.; Nonaka, S. Inhibitory effect of Rumex Japonicus Houtt on the porphyrin photooxidative reaction. J. Dermatol. 2000, 27, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.G.; Yonezawa, T.; Son, M.J.; Woo, J.T.; Ohba, S.; Chung, U.-I.; Yagasaki, K. Antidiabetic effect of nepodin, a component of Rumex roots, and its modes of action in vitro and in vivo. BioFactors 2014, 40, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Mori, T.; Yonezawa, T.; Saito, Y.; Teruya, T.; Woo, J.T. Evaluation of raw nepodin extraction from Rumex japonicus and R. obtusifolius and their DNA polymorphisms. J. Nat. Med. 2018, 72, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. (Lausanne) 2013, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Chleman, R.L.; Shine, B.S.; Stevens, R.J. Non-HDL cholesterol is less informative than the total-to-HDL cholesterol ratio in predicting cardiovascular risk in type 2 diabetes. Diabetes Care 2005, 28, 1796–1797. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Cai, Y.; Qin, R.; Graffy, J.; Holman, D.; Zhao, Z.; Simmons, D. Total/high density lipoprotein cholesterol and cardiovascular disease (re)hospitalization nadir in type 2 diabetes. J. Lipid Res. 2018, 59, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Meisinger, C.; Loewel, H.; Mraz, W.; Koenig, W. Prognostic value of apolipoprotein B and A-I in the prediction of myocardial infarction in middle-aged men and women: Results from the MONICA/KORA Augsburg cohort study. Eur. Heart J. 2005, 26, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Walldius, G.; Jungner, I.; Holme, I.; Aastveit, A.H.; Kolar, W.; Steiner, E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet 2001, 358, 2026–2033. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I.; Aastveit, A.H.; Holme, I.; Furberg, C.D.; Sniderman, A.D. The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin. Chem. Lab. Med. 2004, 42, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.Y.; Lee, J.; Kim, Y.J.; Do, A.; Choi, J.Y.; Cho, S.J.; Jung, U.J.; Lee, M.K.; Park, Y.B.; Choi, M.S. Seabuckthorn Leaves Extract and Flavonoid Glycosides Extract from Seabuckthorn Leaves Ameliorates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obesity. Nutrients 2017, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartelt, A.; Widenmaier, S.B.; Schlein, C.; Johann, K.; Goncalves, R.L.S.; Eguchi, K.; Fischer, A.W.; Parlakgül, G.; Snyder, N.A.; Nguyen, T.B.; et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat. Med. 2018, 24, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tan, Y.; Zhang, N.; Yao, F. Polydatin supplementation ameliorates diet-induced development of insulin resistance and hepatic steatosis in rats. Mol. Med. Rep. 2015, 11, 603–610. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g) | ND | HFD | NE | RU |
---|---|---|---|---|
Casein | 200.00 | 200.00 | 200.00 | 200.00 |
D,L-methionine | 3.00 | 3.00 | 3.00 | 3.00 |
Corn starch | 150.00 | 111.00 | 111.00 | 111.00 |
Sucrose | 500.00 | 370.00 | 370.00 | 370.00 |
Cellulose powder | 50.00 | 50.00 | 50.00 | 50.00 |
Corn oil | 50.00 | 30.00 | 30.00 | 30.00 |
Lard | - | 170.00 | 170.00 | 170.00 |
Mineral Mixture (AIN-76) 1 | 35.00 | 42.00 | 42.00 | 42.00 |
Vitamin mix (AIN-76) 2 | 10.00 | 12.00 | 12.00 | 12.00 |
Choline bitartrate | 2.00 | 2.00 | 2.00 | 2.00 |
Cholesterol | - | 10.00 | 10.00 | 10.00 |
Nepodin | - | - | 0.020 | - |
Rumex japonicus Houtt. ethanol extract | - | - | - | 0.050 |
tert-Butylhydroquinone | 0.01 | 0.04 | 0.04 | 0.04 |
Total (g) | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
ND | HFD | NE | RU | |
---|---|---|---|---|
TG (mmol/L) | 0.89 ± 0.04 | 1.04 ± 0.04 *b | 0.91 ± 0.03 ab | 0.88 ± 0.05 a |
TC (mmol/L) | 3.82 ± 0.10 | 6.43 ± 0.30 ***b | 5.16 ± 0.26 a | 5.77 ± 0.35 ab |
FFA (mmol/L) | 0.70 ± 0.03 | 0.82 ± 0.04 *b | 0.67 ± 0.03 a | 0.61 ± 0.04 a |
HDL-C (mmol/L) | 1.67 ± 0.07 | 2.57 ± 0.21 ***ab | 2.25 ± 0.11 a | 3.19 ± 0.22 b |
nonHDL-C (mmol/L) | 2.16 ± 0.11 | 3.86 ± 0.37 **b | 2.91 ± 0.22 ab | 2.58 ± 0.19 a |
AI | 1.33 ± 0.09 | 1.84 ± 0.51 | 1.31 ± 0.11 | 0.83 ± 0.06 |
HTR (%) | 43.76 ± 1.90 | 40.86 ± 3.71 a | 44.02 ± 1.97 a | 55.23 ± 1.88 b |
Apo A-I (mg/dL) | 25.83 ± 0.25 | 23.80 ± 0.26 ***a | 23.21 ± 0.71 a | 26.99 ± 0.31 b |
Apo B (mg/dL) | 5.31 ± 0.25 | 7.14 ± 0.47 ***b | 6.41 ± 0.30 ab | 5.68 ± 0.35 a |
Apo A-I /Apo B | 4.96 ± 0.22 | 3.48 ± 0.21 ***a | 3.67 ± 0.16 a | 4.92 ± 0.35 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, E.-Y.; Yu, M.K.; Woo, J.T.; Cho, S.-J.; Yamano, A.; Choi, M.-S. Rumex japonicus Houtt. Ethanol Extract and Its Active Component on Prevention of Dyslipidemia and Hyperglycemia in Diet-Induced C57BL/6J Obese Mice. Appl. Sci. 2018, 8, 2247. https://doi.org/10.3390/app8112247
Kwon E-Y, Yu MK, Woo JT, Cho S-J, Yamano A, Choi M-S. Rumex japonicus Houtt. Ethanol Extract and Its Active Component on Prevention of Dyslipidemia and Hyperglycemia in Diet-Induced C57BL/6J Obese Mice. Applied Sciences. 2018; 8(11):2247. https://doi.org/10.3390/app8112247
Chicago/Turabian StyleKwon, Eun-Young, Mi Kyeong Yu, Je Tae Woo, Su-Jung Cho, Aki Yamano, and Myung-Sook Choi. 2018. "Rumex japonicus Houtt. Ethanol Extract and Its Active Component on Prevention of Dyslipidemia and Hyperglycemia in Diet-Induced C57BL/6J Obese Mice" Applied Sciences 8, no. 11: 2247. https://doi.org/10.3390/app8112247
APA StyleKwon, E. -Y., Yu, M. K., Woo, J. T., Cho, S. -J., Yamano, A., & Choi, M. -S. (2018). Rumex japonicus Houtt. Ethanol Extract and Its Active Component on Prevention of Dyslipidemia and Hyperglycemia in Diet-Induced C57BL/6J Obese Mice. Applied Sciences, 8(11), 2247. https://doi.org/10.3390/app8112247