Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb
Abstract
:1. Introduction
2. Methods and Experiments
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W. Combs rule. Nat. Photonics 2009, 3, 313–314. [Google Scholar] [CrossRef]
- Cundiff, S.T. Phase stabilization of ultrashort optical pulses. J. Phys. D-Appl. Phys. 2002, 35, R43–R59. [Google Scholar] [CrossRef]
- Wu, X.; Yang, L.; Zhang, H.; Yang, H.; Wei, H.; Li, Y. Hybrid mode-locked Er-fiber oscillator with a wide repetition rate stabilization range. Appl. Opt. 2015, 54, 1681–1687. [Google Scholar] [CrossRef]
- Nakajima, Y.; Minoshima, K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement. Opt. Express 2015, 23, 25979–25987. [Google Scholar] [CrossRef]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef]
- Bitou, Y.; Schibli, T.R.; Minoshima, K. Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator. Opt. Express 2006, 14, 644–654. [Google Scholar] [CrossRef]
- Dandliker, R.; Salvade, Y.; Zimmermann, E. Distance measurement by multiple-wavelength interferometry. J. Opt.-Nouv. Rev. D Opt. 1998, 29, 105–114. [Google Scholar] [CrossRef]
- Joo, K.N.; Kim, S.W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef]
- Salvade, Y.; Schuhler, N.; Leveque, S.; Le Floch, S. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl. Opt. 2008, 47, 2715–2720. [Google Scholar] [CrossRef]
- Falaggis, K.; Towers, D.P.; Towers, C.E. Multiwavelength interferometry: Extended range metrology. Opt. Lett. 2009, 34, 950–952. [Google Scholar] [CrossRef]
- Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; van den Berg, S.A.; Urbach, H.P. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express 2011, 19, 6549–6562. [Google Scholar] [CrossRef]
- van den Berg, S.A.; Persijn, S.T.; Kok, G.J.P.; Zeitouny, M.G.; Bhattacharya, N. Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement. Phys. Rev. Lett. 2012, 108. [Google Scholar] [CrossRef] [PubMed]
- Schuhler, N.; Salvade, Y.; Leveque, S.; Daendliker, R.; Holzwarth, R. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 2006, 31, 3101–3103. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Schouten, R.N.; Bhattacharya, N.; van den Berg, S.A. Experimental demonstration of distance measurement with a femtosecond frequency comb laser. J. Eur. Opt. Soc.-Rapid Publ. 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Joo, K.-N.; Kim, Y.; Kim, S.-W. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express 2008, 16, 19799–19806. [Google Scholar] [CrossRef] [PubMed]
- Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A. Femtosecond frequency comb based distance measurement in air. Opt. Express 2009, 17, 9300–9313. [Google Scholar] [CrossRef]
- Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; van den Berg, S.A.; Urbach, H.P.; Braat, J.J.M. High-accuracy long-distance measurements in air with a frequency comb laser. Opt. Lett. 2009, 34, 1982–1984. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Liu, T.-A.; Newbury, N.R.; Coddington, I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.-W.; Kim, Y.-J. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol. 2013, 24. [Google Scholar] [CrossRef]
- Hebert, N.B.; Boudreau, S.; Genest, J.; Deschenes, J.-D. Coherent dual-comb interferometry with quasi-integer-ratio repetition rates. Opt. Express 2014, 22, 29152–29160. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhou, Q.; Shen, L.; Ni, K.; Zeng, X.; Li, Y. Experimental optimization of the repetition rate difference in dual-comb ranging system. Appl. Phys. Express 2014, 7. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express 2014, 22, 6597–6604. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Xiong, S.; Ni, K.; Zhu, Z.; Zhou, Q. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt. Express 2015, 23, 32044–32053. [Google Scholar] [CrossRef]
- Wu, G.H.; Liao, L.; Xiong, S.L.; Li, G.Y.; Cai, Z.J.; Zhu, Z.B. Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement. Sci. Rep. 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Arai, K.; Takahashi, M.; Inaba, H.; Minoshima, K. High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs. Meas. Sci. Technol. 2013, 24, 015203. [Google Scholar] [CrossRef]
- Wu, G.; Takahashi, M.; Arai, K.; Inaba, H.; Minoshima, K. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs. Sci. Rep. 2013, 3, 01894. [Google Scholar] [CrossRef]
- Wu, G.; Takahashi, M.; Inaba, H.; Minoshima, K. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt. Lett. 2013, 38, 2140–2143. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Wang, Y.; Cai, Y.; Liu, J.; Liu, J.; Wu, G. Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb. Appl. Sci. 2018, 8, 2465. https://doi.org/10.3390/app8122465
Xiong S, Wang Y, Cai Y, Liu J, Liu J, Wu G. Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb. Applied Sciences. 2018; 8(12):2465. https://doi.org/10.3390/app8122465
Chicago/Turabian StyleXiong, Shilin, Yue Wang, Yawen Cai, Jiuli Liu, Jie Liu, and Guanhao Wu. 2018. "Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb" Applied Sciences 8, no. 12: 2465. https://doi.org/10.3390/app8122465
APA StyleXiong, S., Wang, Y., Cai, Y., Liu, J., Liu, J., & Wu, G. (2018). Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb. Applied Sciences, 8(12), 2465. https://doi.org/10.3390/app8122465