Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure and Microhardness
3.2. Wear Rate
3.3. Coefficient of Friction (COF)
3.4. Worn Surfaces
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Costa, S.; Moura, A.D.; Esteves, A.; Barbosa, J.; Pinto, A.M.P.; Braga, M.H. Simulation of the nucleation of the precipitate Al3Sc in an aluminum scandium alloy using molecular dynamics and kinetic Monte Carlo method. J. Am. Chem. Soc. 2013, 129, 4670–14683. [Google Scholar]
- Baradeswaran, A.; Perumal, A.E. Wear and mechanical characteristics of Al 7075/graphite composites. Compos. Part B Eng. 2014, 56, 472–476. [Google Scholar] [CrossRef]
- Rodríguez, J.; Poza, P.; Garrido, M.A.; Rico, A. Dry sliding wear behaviour of aluminium–lithium alloys reinforced with SiC particles. Wear 2007, 262, 292–300. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Saravanan, S.D.; Shankar, S. Dry sliding wear and friction behavior of aluminum-rice husk ash composite using Taguchi’s technique. J. Compos. Mater. 2015, 49, 2241–2250. [Google Scholar] [CrossRef]
- Dinaharan, I.; Nelson, R.; Vijay, S.J.; Akinlabi, E.T. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Mater. Charact. 2016, 118, 149–158. [Google Scholar] [CrossRef]
- Sannino, A.P.; Rack, H.J. Dry sliding wear of discontinuously reinforced aluminum composites: Review and discussion. Wear 1995, 189, 1–19. [Google Scholar] [CrossRef]
- Dwivedi, D.K. Adhesive wear behaviour of cast aluminium–silicon alloys: Overview. Mater. Des. 2010, 31, 2517–2531. [Google Scholar] [CrossRef]
- Shipway, P.H.; Kennedy, A.R.; Wilkes, A.J. Sliding wear behaviour of aluminium-based metal matrix composites produced by a novel liquid route. Wear 1998, 216, 160–171. [Google Scholar] [CrossRef]
- Miyajima, T.; Iwai, Y. Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear 2003, 255, 606–616. [Google Scholar] [CrossRef]
- Soy, U.; Ficici, F.; Demir, A. Evaluation of the Taguchi method for wear behavior of Al/SiC/B4C composites. J. Compos. Mater. 2012, 46, 851–859. [Google Scholar] [CrossRef]
- Maleque, A.; Karim, R. Wear behavior of as-cast and heat treated triple particle size SiC reinforced aluminum metal matrix composites. Ind. Lubr. Tribol. 2009, 61, 78–83. [Google Scholar] [CrossRef]
- Altınkök, N. Investigation of mechanical and machinability properties of Al2O3/SiCp reinforced Al-based composite fabricated by stir cast technique. J. Porous Mater. 2015, 22, 1643–1654. [Google Scholar] [CrossRef]
- Selvi, S.; Rajasekar, E. Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM. J. Mech. Sci. Technol. 2015, 29, 785–792. [Google Scholar] [CrossRef]
- Ficici, F.; Koksal, S. Microstructural characterization and wear properties of in situ AlB2-reinforced Al-4Cu metal matrix composite. J. Compos. Mater. 2016, 50, 1685–1696. [Google Scholar] [CrossRef]
- Mishra, R.S.; Valiev, R.Z.; Mcfadden, S.X.; Islamgaliev, R.K.; Mukherjee, A.K. Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite. Scr. Mater. 1999, 40, 1151–1155. [Google Scholar] [CrossRef]
- Jun, J.; Kim, J.; Park, B.K.; Kim, K.; Jung, W. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy. J. Mater. Sci. 2005, 40, 2659–2661. [Google Scholar] [CrossRef]
- Liu, Y.L.; Luo, L.; Shun, M.Z.; Zhang, L.; Zhao, Y.H.; Wu, B.L. Microstructure and mechanical properties of Al–5.5Fe–1.1V–0.6Si alloy solidified under near-rapid cooling and with Ce addition. Rare Met. 2016, 1–6. [Google Scholar] [CrossRef]
- Chang, J.; Moon, I.; Choi, C. Refinement of Cast Microstructure of Hypereutectic Al-Si Alloys through the Addition of Rare Earth Metals. J. Mater. Sci. 1998, 33, 5015–5023. [Google Scholar] [CrossRef]
- Qiu, H.; Yan, H.; Hu, Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys. J. Alloys Compd. 2013, 567, 77–81. [Google Scholar] [CrossRef]
- Kaur, P.; Dwivedi, D.K.; Pathak, P.M.; Rodriguez, S.H. The effect of electromagnetic stirring and cerium addition on dry sliding reciprocating wear of hypereutectic aluminium–silicon alloy. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011, 226, 251–258. [Google Scholar] [CrossRef]
- Farias, M.C.M.; Souza, R.M.; Sinatora, A.; Tanaka, D.K. The influence of normal load, sliding velocity and martensitic transformation on the unlubricated sliding wear of austenitic stainless steels. Wear 2007, 263, 773–781. [Google Scholar] [CrossRef]
- Kim, H.J.; Emge, A.; Karthikeyan, S.; Rigney, D.A. Effects of tribooxidation on sliding behavior of aluminum. Wear 2005, 259, 501–505. [Google Scholar] [CrossRef]
- Yan, H.; Ye, H.Y.; Chen, W. Dry friction and wear performance of co-continuous Al-23Si/SiC composites. Mater. Res. Innov. 2015, 19, 131–135. [Google Scholar] [CrossRef]
- Uyyuru, R.K.; Surappa, M.; Brusethaug, S. Tribological behavior of Al–Si–SiC composites/automobile brake pad system under dry sliding conditions. Tribol. Int. 2007, 40, 365–373. [Google Scholar] [CrossRef]
- Mrowkanowotnik, G.; Sieniawski, J.; Nowotnik, A. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy. J. Microsc.-Oxf. 2010, 237, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Fan, Y.G.; Tang, Y.J. Effect of lanthanum-praseodymium-cerium mischmetal on mechanical properties and microstructure of Mg-A1 alloys. J. Wuhan Univ. Technol. 2011, 26, 102–104. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, K.; Fang, D.; Qiu, X.; Tang, D.X.; Meng, J. Microstructure, tensile properties, and creep behavior of high-pressure die-cast Mg–4Al–4RE–0.4Mn (RE = La, Ce) alloys. J. Mater. Sci. 2009, 44, 2046–2054. [Google Scholar] [CrossRef]
- Asl, K.M.; Masoudi, A.; Khomamizadeh, F. The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg–Al–Zn alloy. Mater. Sci. Eng. A Struct. 2010, 527, 2027–2035. [Google Scholar]
- Hall, E.O. The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation. Proc. Phys. Soc. 1951, 64, 742. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Tiryakioğlu, M. On the relationship between Vickers hardness and yield load in Al–Zn–Mg–Cu Alloys. Mater. Sci. Eng. A Struct. 2015, 633, 17–19. [Google Scholar] [CrossRef]
- Pourbahari, B.; Emamy, M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy. Mater. Des. 2016, 94, 111–120. [Google Scholar] [CrossRef]
- Yang, L.J. Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear 2003, 255, 579–592. [Google Scholar] [CrossRef]
- Elsalam, F.A.; Wahab, L.A.; Nada, R.H.; Zahran, H.Y. Temperature and dwell time effect on hardness of Al-base alloys. J. Mater. Sci. 2007, 42, 3661–3669. [Google Scholar]
- Tahamtan, S.; Halvaee, A.; Emamy, M. The influences of interfacial characteristics and subsurface microstructural evolution on wear behavior of Al/A206-5 Pct alumina micro/nano-composites. Metall. Mater. Trans. B 2015, 46, 1115–1124. [Google Scholar] [CrossRef]
- Bhushan, B.; Ko, P.L. Introduction to Tribology, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2002. [Google Scholar]
- Fishkis, M. Metal transfer in the sliding process. Wear 1988, 127, 101–110. [Google Scholar] [CrossRef]
Si | Mg | Cu | Zn | Fe | Mn | Al |
---|---|---|---|---|---|---|
4.5~5.5 | 0.4~0.6 | 1.0~1.5 | <0.3 | 0.6~1.0 | <0.5 | Balance |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Yan, H.; Zhu, J.-B. Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy. Appl. Sci. 2018, 8, 163. https://doi.org/10.3390/app8020163
Liu W, Yan H, Zhu J-B. Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy. Applied Sciences. 2018; 8(2):163. https://doi.org/10.3390/app8020163
Chicago/Turabian StyleLiu, Wei, Hong Yan, and Jian-Bin Zhu. 2018. "Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy" Applied Sciences 8, no. 2: 163. https://doi.org/10.3390/app8020163
APA StyleLiu, W., Yan, H., & Zhu, J.-B. (2018). Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy. Applied Sciences, 8(2), 163. https://doi.org/10.3390/app8020163