Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modified Amplitude and Phase Estimation (mAPES) Beamforming [26]
2.2. Gaussian Phase Coherence Factor (gPCF)
2.3. Modifiled APES Beamformer Weighted by gPCF
2.4. Experimental Methods and Evaluation Metrics
2.4.1. Experimental Setup
2.4.2. Spatial Resolution
2.4.3. Contrast
2.4.4. Peak-to-Speckle Ratio
3. Results
3.1. Basic Experimental Results Using Phantom
3.2. In Vivo Measurement of Human Carotid Artery
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shattuck, D.P.; Weinshenker, M.D. Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phase array. J. Acoust. Soc. Am. 1984, 75, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Bercoff, J.; Sandrin, L.; Fink, M. Ultrafast compounding imaging for 2-D motion vector estimation: application to transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Bercoff, J.; Tanter, M.; Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Honjo, Y.; Hasegawa, H.; Kanai, H. Accurate ultrasonic measurement of myocardial regional strain rate at high temporal and spatial resolutions. In Proceedings of the 2008 IEEE International Ultrasonics Symposium (IUS), Beijing, China, 2–5 November 2008; pp. 1995–1998. [Google Scholar]
- Provost, J.; Nguyen, V.T.-H.; Legrand, D.; Okrasinski, S.; Costet, A.; Gambhir, A.; Garan, H.; Konofagou, E.E. Electromechanical wave imaging for arrhythmias. Phys. Med. Biol. 2011, 56, L1–L11. [Google Scholar] [CrossRef] [PubMed]
- Cikes, M.; Tong, L.; Sutherland, G.R.; D’hooge, J. Ultrafast cardiac ultrasound imaging: Technical principles, applications, and clinical benefits. JACC Cardiovasc. Imaging 2014, 7, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Udesen, J.; Gran, F.; Hansen, K.L.; Jensen, J.A.; Thomsen, C.; Nielsen, M.B. High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1729–1743. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Kanai, H. Simultaneous imaging of artery wall strain and blood flow by high frame rate acquisition of RF signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2626–2639. [Google Scholar] [CrossRef] [PubMed]
- Bercoff, J.; Montaldo, G.; Loupas, T.; Savery, D.; Mézière, F.; Fink, M.; Tanter, M. Ultrafast compound Doppler imaging: providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Yiu, B.Y.; Yu, A.C. High-frame-rate ultrasound colorencoded speckle imaging of complex flow dynamics. Ultrasound Med. Biol. 2013, 39, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Hasegawa, H.; Kanai, H. Temporal averaging of two-dimensional correlation functions for velocity vector imaging of cardiac blood flow. J. Med. Ultrason. 2015, 42, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Hasegawa, H.; Kanai, H. Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow. Jpn. J. Appl. Phys. 2015, 54. [Google Scholar] [CrossRef]
- Jensen, J.A.; Nikolov, S.I.; Yu, A.C.H.; Garcia, D. Ultrasound vector flow imaging–Part II: Parallel system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 17221732. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Denarie, B.; Tangen, T.A.; Ekroll, I.K.; Rolim, N.; Torp, H.; Bjåstad, T.; Lovstakken, L. Coherent plane-wave compounding for very high frame rate ultrasonography of rapidly moving targets. IEEE Trans. Med. Imaging 2013, 32, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A.; Nikolov, S.I.; Gammelmark, K.L.; Pedersen, M.H. Synthetic aperture ultrasound imaging. Ultrasonics 2006, 44, e5–e15. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; De Korte, C.L. Impact of element pitch on synthetic aperture ultrasound imaging. J. Med. Ultrason. 2016, 43, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Veen, B.D.V.; Buckley, K.M. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Mag. 1988, 5, 4–24. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Sasso, M.; Cohen-Bacrie, C. Medical ultrasound imaging using the fully adaptive beamformer. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 23 March 2005; pp. 489–492. [Google Scholar]
- Synnevåg, J.F.; Austeng, A.; Holm, S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1606–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holfort, I.K.; Gran, F.; Jensen, J.A. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 314–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Synnevåg, J.F.; Austeng, A.; Holm, S. Benefits of minimum-variance beamforming in medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, A.E.A.; Holfort, I.K.; Austeng, A.; Synnevåg, J.F.; Jensen, J.A. APES beamforming applied to the ultrasound imaging. In Proceedings of the 2009 IEEE International Ultrasonics Symposium (IUS), Rome, Italy, 20–23 September 2009; pp. 2347–2350. [Google Scholar]
- Hasegawa, H.; Kanai, H. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H. Improvement of penetration of modified amplitude and phase estimation beamformer. J. Med. Ultrason. 2017, 44, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H. Apodized adaptive beamformer. J. Med. Ultrason. 2017, 44, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H. Adaptive beamforming applied to transverse oscillation. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Li, P.-C.; Li, M.-L. Adaptive imaging using the generalized coherence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 128–141. [Google Scholar] [PubMed]
- Camacho, J.; Parrilla, M.; Fritsch, C. Phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 958–974. [Google Scholar] [CrossRef] [PubMed]
- Asl, B.M.; Mahloojifar, A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans. Ultrasonics. Ferroelectr. Freq. Control 2009, 56, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, C.-I.C.; Holm, S. Wiener beamforming and the coherence factor in ultrasound imaging. IEEE Trans. Ultrasonics. Ferroelectr. Freq. Control 2010, 57, 1329–1346. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, M. Improved high axial resolution ultrasound imaging using spectral whitening and minimum-variance based coherence weighting. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Hasegawa, H.; Kanai, H. Effect of subaperture beamforming on phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H. Enhancing effect of phase coherence factor for improvement of spatial resolution in ultrasonic imaging. J. Med. Ultrason. 2016, 43, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Hasegawa, H. Effect of frequency characteristic of excitation pulse on lateral spatial resolution in coded ultrasound imaging. Jpn. J. Appl. Phys. 2017, 56. [Google Scholar] [CrossRef]
- Franco, E.E.; Andrade, M.A.B.; Adamowski, J.C.; Buiochi, F. Acoustic beam modeling of ultrasonic transducers and arrays using the impulse response and the discrete representation methods. J. Braz. Soc. Mech. Sci. Eng. 2011, 33, 408–416. [Google Scholar] [CrossRef]
- Varray, F.; Kalkhoran, M.A.; Vray, D. Adaptive minimum variance coupled with sign and phase coherence factor in IQ domain for plane wave beamforming. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozumi, M.; Hasegawa, H. Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound. Appl. Sci. 2018, 8, 204. https://doi.org/10.3390/app8020204
Mozumi M, Hasegawa H. Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound. Applied Sciences. 2018; 8(2):204. https://doi.org/10.3390/app8020204
Chicago/Turabian StyleMozumi, Michiya, and Hideyuki Hasegawa. 2018. "Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound" Applied Sciences 8, no. 2: 204. https://doi.org/10.3390/app8020204
APA StyleMozumi, M., & Hasegawa, H. (2018). Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound. Applied Sciences, 8(2), 204. https://doi.org/10.3390/app8020204