Magnetic Nanofluid Droplet Impact on an AAO Surface with a Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Magnetic Nanofluids
2.2. Preparation of Aluminum Sheet Surfaces
2.3. Experimental Steup
3. Results and Discussion
3.1. Effect of Surface Morphology
3.2. Effect of Surface Morphology with Magnetic Field
3.3. Influence of Field Gradient on the Effect of Surface Morphology
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Werner, S.R.; Jones, J.R.; Paterson, A.H.; Archer, R.H.; Pearce, D.L. Droplet impact and spreading: Droplet formation effects. Chem. Eng. Sci. 2007, 62, 2336–2345. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.L.; Yan, Y.Y.; Han, Z.W.; Ren, L.Q. Anti-icing performance of superhydrophobic aluminum alloy surface and its rebounding mechanism of droplet under super-cold conditions. Surf. Coat. Technol. 2017, 331, 7–14. [Google Scholar] [CrossRef]
- Li, H.; Yu, S. A robust superhydrophobic surface and origins of its self-cleaning properties. Appl. Surf. Sci. 2017, 420, 336–345. [Google Scholar] [CrossRef]
- Kim, J. Spray cooling heat transfer: The state of the art. Int. J. Heat Fluid Flow 2007, 28, 753–767. [Google Scholar] [CrossRef]
- Ye, Q.; Domnick, J. Analysis of droplet impingement of different atomizers used in spray coating processes. J. Coat. Technol. Res. 2017, 14, 467–476. [Google Scholar] [CrossRef]
- Xu, P.Y.; Pershin, L.; Mostaghimi, J.; Coyle, T.W. Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray. Mater. Lett. 2017, 211, 24–27. [Google Scholar] [CrossRef]
- Bolleddula, D.A.; Berchielli, A.; Aliseda, A. Impact of a heterogeneous liquid droplet on a dry surface: Application to the pharmaceutical industry. Adv. Colloid Interface Sci. 2010, 159, 114–159. [Google Scholar] [CrossRef] [PubMed]
- De Gans, B.J.; Duineveld, P.C.; Schubert, U.S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Aziz, S.D.; Chandra, S. Impact, recoil and splashing of molten metal droplets. Int. J. Heat Mass Trans. 2000, 43, 2841–2857. [Google Scholar] [CrossRef]
- Megaridis, C.M.; Boomsma, K.; Bayer, I.S. Partial rebound of molten-metal droplets impacting on solid substrates. AlChE J. 2004, 50, 1356–1363. [Google Scholar] [CrossRef]
- Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels. Int. J. Heat Fluid Flow 2013, 44, 662–683. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiang, Q.; Li, Z.; Yao, S.; Liang, X.; Wang, F. Experiment and simulation investigation on the characteristics of diesel spray impingement based on droplet impact phenomenon. Appl. Sci. 2018, 8, 384. [Google Scholar] [CrossRef]
- Worthington, A.M. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. 1876, 25, 261–272. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.Y.; Guo, P.H.; Lv, Q. Experimental studies on the effect of Reynolds and Weber numbers on the impact forces of low-speed droplets colliding with a solid surface. Exp. Fluids 2017, 58, 125. [Google Scholar] [CrossRef]
- Yonemoto, Y.; Kunugi, T. Analytical consideration of liquid droplet impingement on solid surfaces. Sci. Rep. 2017, 7, 2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, D.; Katagiri, K.; Sato, T.; Nishiyama, H. Spreading behavior of an impacting drop on a structured rough surface. Phys. Fluids 2005, 17, 100608. [Google Scholar] [CrossRef]
- Liu, Y.H.; Whyman, G.; Bormashenko, E.; Hao, C.L.; Wang, Z.K. Controlling drop bouncing using surfaces with gradient features. Appl. Phys. Lett. 2015, 107, 051604. [Google Scholar] [CrossRef]
- Patil, N.D.; Bhardwaj, R.; Sharma, A. Droplet impact dynamics on micropillared hydrophobic surfaces. Exp. Therm. Fluid Sci. 2016, 74, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Malla, L.K.; Patil, N.D.; Bhardwaj, R.; Neild, A. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface. Langmuir 2017, 33, 9620–9631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Liu, S.; Zhu, C.; Tao, J.; Chen, Z.; Tao, H.; Pan, L.; Wang, G.; Wang, T. Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces. Appl. Phys. Lett. 2017, 110, 221601. [Google Scholar] [CrossRef]
- Kwak, G.; Lee, D.W.; Kang, I.S.; Yong, K. A study on the dynamic behaviors of water droplets impacting nanostructured surfaces. AIP Adv. 2011, 1, 042139. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.C.; Pacheco, S.; Pirat, C.; Lefferts, L.; Lohse, D. Drop impact upon micro- and nanostructured Superhydrophobic surfaces. Langmuir 2009, 25, 12293–12298. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Van Swigchem, J.; Jansen, H.P.; Zandvliet, H.J.W.; Poelsema, B.; Kooij, E.S. Droplet impact on hydrophobic surfaces with hierarchical roughness. Surf. Topogr. Metrol. Prop. 2014, 2, 035002. [Google Scholar] [CrossRef]
- Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H. Small particles, big impacts: A review of the diverse applications of nanofluids. J. Appl. Phys. 2013, 113, 011301. [Google Scholar] [CrossRef]
- Bellerová, H.; Tseng, A.A.; Pohanka, M.; Raudensky, M. Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles. Heat Mass Transf. 2012, 48, 1977–1983. [Google Scholar] [CrossRef]
- Chang, T.B. Formation of nano-adsorption layer and its effects on nanofluid spray heat transfer performance. J. Heat Transfer 2015, 137, 021901. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Zhu, J.; Wen, D. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Appl. Energy 2016, 181, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Lue, Y.F.; Hung, Y.H.; Li, F.S.; Teng, T.P.; Chen, S.Y.; Wu, C.H.; Ou, Y.C. Performance assessment and scooter verification of nano-alumina engine oil. Appl. Sci. 2016, 6, 258. [Google Scholar] [CrossRef]
- Murshed, S.M.; de Castro, C.A.N. Spreading characteristics of nanofluid droplets impacting onto a solid surface. J. Nanosci. Nanotechnol. 2011, 11, 3427–3433. [Google Scholar] [CrossRef] [PubMed]
- Kahani, M.; Jackson, R.G.; Rosengarten, G. Experimental investigation of TiO2/water nanofluid droplet impingement on nanostructured surfaces. Ind. Eng. Chem. Res. 2016, 55, 2230–2241. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Ferrohydrodynamics; Cambridge University Press: New York, NY, USA, 1985; ISBN 9780486678344. [Google Scholar]
- Blaney, L. Magnetite (Fe3O4) properties, sinthesis, and applications. Lehigh Rev. 2007, 15, 32–81. [Google Scholar]
- Mahdavi, M.; Ahmad, M.; Haron, M.; Namvar, F.; Namvar, B.; Nadi, B.; Ab Rahman, M.; Amin, J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013, 18, 7533–7548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latikka, M.; Backholm, M.; Timonen, J.V.I.; Ras, R.H.A. Wetting of ferrofluids: Phenomena and control. Curr. Opin. Colloid Interface Sci. 2018. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Zhu, G.; Chua, Y.-C.; Phan, V.-N.; Tan, S.-H. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 2010, 26, 12553–12559. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, S.; Schneider, M. Experimental investigation of wetting with magnetic fluids. Langmuir 2016, 32, 5135–5140. [Google Scholar] [CrossRef] [PubMed]
- Rigoni, C.; Pierno, M.; Mistura, G.; Talbot, D.; Massart, R.; Bacri, J.-C.; Abou-Hassan, A. Static magnetowetting of ferrofluid drops. Langmuir 2016, 32, 7639–7646. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-C.; Weng, H.C. The effect of a magnetic field on the profile of sessile magnetic nanofluid droplets. Smart Sci. 2017, 5, 214–219. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Weng, H.C. A Brief note on the magnetowetting of magnetic nanofluids on AAO Surfaces. Nanomaterials 2018, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Shimoiizaka, J. Flocculation and dispersion of powders in liquids. J. Jpn. Soc. Powder Powder Metall. 1966, 13, 263–274. [Google Scholar]
- Shimoiizaka, J.; Nakatsuka, K.; Chubachi, R.; Sato, Y. On the Preparation of Magnetic Fluid and Its Behavior. J. Jpn. Soc. Powder Powder Metall. 1975, 22, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Shoghl, S.N.; Jamali, J.; Moraveji, M.K. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp. Therm. Fluid Sci. 2016, 74, 339–346. [Google Scholar] [CrossRef]
Process | without anodic oxidation | with anodic oxidation |
Appearance | ||
Contact angle | 66.12 ± 1.68° | 53.01 ± 5.82° |
Time (ms) | (a) | (b) |
−0.5 | ||
0 | ||
2 | ||
6 | ||
14 | ||
30 | ||
100 | ||
200 | ||
300 | ||
Time (ms) | (c) | (d) |
−0.5 | ||
0 | ||
2 | ||
6 | ||
14 | ||
30 | ||
100 | ||
200 | ||
300 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, Y.-C.; Weng, H.C. Magnetic Nanofluid Droplet Impact on an AAO Surface with a Magnetic Field. Appl. Sci. 2018, 8, 1059. https://doi.org/10.3390/app8071059
Chien Y-C, Weng HC. Magnetic Nanofluid Droplet Impact on an AAO Surface with a Magnetic Field. Applied Sciences. 2018; 8(7):1059. https://doi.org/10.3390/app8071059
Chicago/Turabian StyleChien, Yu-Chin, and Huei Chu Weng. 2018. "Magnetic Nanofluid Droplet Impact on an AAO Surface with a Magnetic Field" Applied Sciences 8, no. 7: 1059. https://doi.org/10.3390/app8071059
APA StyleChien, Y. -C., & Weng, H. C. (2018). Magnetic Nanofluid Droplet Impact on an AAO Surface with a Magnetic Field. Applied Sciences, 8(7), 1059. https://doi.org/10.3390/app8071059