A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break
Abstract
:1. Introduction
2. Moving Particle Semi-Implicit Method
2.1. Governing Equations
2.2. Particle Interaction Model
3. Simulation Results and Discussion
3.1. Simulation of Dam Breaking
3.2. Simulation of Dam Breaking with Soil Bed
3.3. Swash Uprush Problem
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Chanson, H. Application of the method of characteristics to the dam break wave problem. J. Hydraul. Res. 2009, 47, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.B.; Wu, M.S.; Liang, S.J. Numerical simulation of a dam break for an actual river terrain environment. Hydrol. Process. 2009, 21, 447–460. [Google Scholar] [CrossRef]
- Janosi, I.M.; Jan, D.; Szabo, K.G.; Tel, T. Turbulent drag reduction in dam break flows. Exp. Fluids 2004, 37, 219–229. [Google Scholar] [CrossRef]
- Wu, W.M.; Wang, S.S.Y. One-dimensional modeling of dam break flow over movable beds. J. Hydraul. Eng. 2007, 133, 48–58. [Google Scholar] [CrossRef]
- Postacchini, M.; Othman, I.K.; Brocchini, M.; Baldock, T.E. Sediment transport and morphodynamics generated by a dam-break swash uprush: Coupled vs. uncoupled modelling. Coast. Eng. 2014, 89, 99–105. [Google Scholar] [CrossRef]
- Brocchini, M.; Peregrine, D.H. The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 2001, 449, 225–254. [Google Scholar] [CrossRef]
- Brocchini, M.; Peregrine, D.H. The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech. 2001, 449, 255–290. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Liu, J.; Koshizuka, S.; Oka, Y. A hybrid particle-mesh method for viscous, incompressible, multiphase flows. J. Comput. Phys. 2005, 202, 65–93. [Google Scholar] [CrossRef] [Green Version]
- Koshizuka, S.; Nobe, A.; Oka, Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Methods Fluids 1998, 26, 751–760. [Google Scholar] [CrossRef]
- Lee, B.H.; Park, J.C.; Kim, M.H.; Hwang, S.C. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput. Methods Appl. Mech. Eng. 2011, 200, 1113–1125. [Google Scholar] [CrossRef]
- Juez, C.; Murillo, J.; Garcia-Navarro, P. A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Adv. Water Resour. 2014, 71, 93–109. [Google Scholar] [CrossRef]
- Juez, C.; Ferrer-Boix, C.; Murillo, J.; Hassan, M.A.; Garcia-Navarro, P. A model based on Hirano-Exner equations for two-dimensional transient flows over heterogeneous erodible beds. Adv. Water Resour. 2016, 87, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Amicarelli, A.; Albano, R.; Mirauda, D.; Agate, G.; Sole, A.; Guandalini, R. A smoothed particle hydrodynamics model 3D solid body transport in free surface flows. Comput. Fluids 2015, 116, 205–228. [Google Scholar] [CrossRef]
- Albano, R.; Sole, A.; Mirauda, D.; Adamowski, J. Modelling large floating bodies in urban area flash-floods via a smoothed particle hydrodynamics model. J. Hydrol. 2016, 541, 344–358. [Google Scholar] [CrossRef]
- Shakibaeinia, A.; Jin, Y.C. A mesh-free particle model for simulation of mobile-bed dam break. Adv. Water Resour. 2011, 34, 794–807. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Koshizuka, S.; Oka, Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 1996, 123, 421–434. [Google Scholar] [CrossRef]
- Farid, P.B.; Kim, M.H.; Kim, K.S.; Park, J.C. Comparative Study of Standard WC-SPH and MPs solvers for Free Surface Academic Problems. Int. J. Offshore Pol. Engery 2016, 26, 235–243. [Google Scholar]
- Tanaka, M.; Masunaga, T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility. J. Comput. Phys. 2010, 229, 4279–4290. [Google Scholar] [CrossRef]
- Nomura, K.; Koshizuka, S.; Oka, Y.; Obata, H. Numerical analysis of drop breakup behavior using particle method. J. Nucl. Sci. Technol. 2001, 38, 1057–1064. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, M.H.; Park, J.C. Development of moving particle simulation method for multiliquid-layer sloshing. Math. Probl. Eng. 2014, 2014, 350165. [Google Scholar] [CrossRef]
- Shirawaka, N.; Horie, H.; Yamamoto, Y.; Tsunoyama, S. Analysis of the void distribution in a circular tube with the two-fluid particle interaction method. J. Nucl. Sci. Technol. 2001, 38, 392–402. [Google Scholar] [CrossRef]
- Kim, K.S. Simulation of Multi-Layer-Liquid Sloshing Effects on Vessel Motions by Using Moving Particle Simulation; Texas A&M University: College Station, TX, USA, 2014. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S. A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break. Appl. Sci. 2018, 8, 1070. https://doi.org/10.3390/app8071070
Kim KS. A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break. Applied Sciences. 2018; 8(7):1070. https://doi.org/10.3390/app8071070
Chicago/Turabian StyleKim, Kyung Sung. 2018. "A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break" Applied Sciences 8, no. 7: 1070. https://doi.org/10.3390/app8071070
APA StyleKim, K. S. (2018). A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break. Applied Sciences, 8(7), 1070. https://doi.org/10.3390/app8071070