Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review
Abstract
:1. Introduction
2. Introduction to Spectral Analysis
2.1. Spectral Space Representation
2.2. Physical Space Representation
3. Frequency Domain Spectral Finite Element Method (FDSFEM)
3.1. Wave Propagation in 1D Elements
3.2. Wave Propagation in 2D Elements
3.3. Wave Propagation in 3D Elements
4. Time Domain Spectral Finite Element Method (TDSFEM)
- Divide the analysed structure into a finite number of geometrically simple elements, called spectral finite elements with a certain number of characteristic points called nodes. The spectral finite elements are connected together in a finite number of nodes located at their edges. The number of nodes in the element indicates a selection of the function used for description of the distribution of the physical properties inside the spectral finite elements, depending on their node values. These functions are called node functions or shape functions—Lobatto, Chebyshew or Laguerre polynomials.
- Transform the ordinary or differential equations describing the analysed physical phenomenon to the equation of the spectral finite element method. This transformation may be a weak formulation of the method where the weighted residual method is applied or the strong formulation where the method of minimising the variation functional of the phenomenon is applied. The aforementioned equations being the problem description are composed at the level of individual elements and are called local equations, whereas the transformations mentioned correspond to the characteristic matrices of elements that are derived. At this step, the element matrices are aggregated, leading to global characteristic matrices.
- Implement the boundary conditions.
- Start the solution process with an appropriate numerical method leading to obtaining values of the sought physical properties in the nodes of individual elements. In the case of non-stationary problems, steps of matrices aggregation until the solution is obtained are repeated until the relevant completion condition is met.
4.1. Wave Propagation in 1D Elements
4.2. Wave Propagation in 2D Elements
4.3. Wave Propagation in 3D Elements
5. Discussion
6. Conclusions
- both described spectral methods allow for a reduction in the calculation time compared to the analysis of the same more complex finite element geometries,
- the most often utilised FDSFEM modelling algorithm requires a simple and reverse Fourier transforms, which can lead to significant numerical errors in two-dimensional geometry, 3D example has not been found in the literature,
- the versatile nature of the TDSFEM is confirmed by the rapidly growing number of publications on the various examples of its use. This fact originates from the mathematical background of the method, i.e., non-uniform nodes distribution in the element modelled. This feature seems to be more effective for modelling problems where wave propagation in structures is considered,
- as stated in the literature [83], in the case of wave propagation modelling, the SEM reduces the computational memory by more than a factor of 20 in terms of total nodal numbers, compared with the FEM. Furthermore, the FEM costs more than 10 times the computational time, compared with the SEM,
- the error is reduced when the average distance between nodes (TDSFEM) becomes shorter [84].
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SHM | Structural Health Monitoring |
DOF | Degree of Freedom |
FEM | Finite Element Method |
FE | Finite Element |
ODE | Ordinary Differential Equation |
PDE | Partial Differential Equation |
FDSFEM | Frequency Domain Spectral Finite Element Method |
TDSFEM | Time Domain Spectral Finite Element Method |
WSFEM | Wavelet Spectral Finite Element Method |
PZT | Piezoelectric Material |
SEM | Spectral Element Method |
VSFDM | Velocity Stress Finite Difference Method |
SGFDM | Staggered Grid Finite Difference Method |
References
- Hall, S. The effective management and use of structural health data. In Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA, 8–10 September 1999; pp. 265–275. [Google Scholar]
- Inman, D.; Farrar, C.; Lopes, V., Jr.; Steffen, V., Jr. (Eds.) Damage Prognosis for Aerospace, Civil and Mechanical Systems; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kleiber, M.; Burczyński, T.; Wilde, K.; Górski, J.; Winkelmann, K.; Smakosz, L. (Eds.) Advances in Mechanics. Theoretical, Computational and Interdisciplinary Issues; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kessler, S.; Spearing, S.; Soutis, C. Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. Struct. 2002, 11, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.; Doebling, S. An Overview of Modal-Based Damage Identification Methods; Technical Report; Los Alamos National Laboratory: Los Alamos, NM, USA, 1997.
- Doebling, S.; Farrar, C.; Prime, M. A Summary Review of Vibration-based Damage Identification Methods. Shock Vib. Dig. 1998, 30, 91–105. [Google Scholar] [CrossRef]
- Israr, A.; Cartmell, M.; Krawczuk, M.; Ostachowicz, W.; Manoach, E.; Trendafilova, I.; Shishkina, E.; Palacz, M. On approximate anatytical solutions for vibrations in cracked plates. Appl. Mech. Mater. 2006, 5–6, 315–322. [Google Scholar] [CrossRef]
- Raja, S.; Prathima Adya, H.; Viswanath, S. Analysis of Piezoelectric Composite Beam and Plate with Multiple Delaminations. Struct. Health Monit. 2006, 5, 255–266. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, P. Improved Damage Detection for Beam-type Structures using a Unigorm Load Surface. Struct. Health Monit. 2007, 6, 99–110. [Google Scholar] [CrossRef]
- Sinou, J. Mechanical Vibrations: Measurement, Effects and Control; chapter A Review of Damage Detection and Health Monitoring of Mechanical Systems from Changes in the Measurement of Linear and Non-linear Vibrations; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 643–702. [Google Scholar]
- Fan, W.; Qiao, P. Vibration-based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Wang, C.S.; Wu, F.; Chang, F. Structural Health Monitoring from fiber-reinforced ccomposite to steel-reinforced concrete. Smart Mater. Struct. 2001, 10, 548–551. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Fundamental Lamb Mode-based Delamination Detection for CF/EP Composite Laminates Using Distributed Piezoelectrics. Struct. Health Monit. 2004, 3, 43–68. [Google Scholar] [CrossRef]
- Mal, A.; Ricci, F.; Banerjee, S.; Shih, F. A Conceptual Structural Health Monitoring System based on Vibration and Wave Propagation. Struct. Health Monit. 2005, 4, 283–293. [Google Scholar] [CrossRef]
- Lestari, W.; Qiao, P. Application of Wave Propagation Analysis for Damage Identification in Composite Laminated Beams. Compos. Mater. 2005, 39, 1967–1984. [Google Scholar] [CrossRef]
- Monnier, T. Lamb Waves-based Impact Damage Monitoring of a Stiffened Aircraft Panel using Piezoelectric Transducers. J. Intell. Mater. Syst. Struct. 2006, 17, 411–421. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Park, H.; Sohn, H.; Law, K.; Farrar, C.R. Time reversal active sensing for health monitoring of a composite plate. J. Sound Vib. 2007, 302, 50–66. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C. Review of Guided-wave Structural Health Monitoring. Shock Vib. Dig. 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Grabowska, J.; Palacz, M.; Krawczuk, M.; Ostachowicz, W.; Trendafilova, I.; Manoach, E.; Cartmell, M. Wavelet analysis for damage identification in composite structures. Key Eng. Mater. 2007, 347, 253–258. [Google Scholar] [CrossRef]
- Grabowska, J.; Palacz, M.; Krawczuk, M. Damage identification by wavelet analysis. Mech. Syst. Signal Process. 2008, 22, 1623–1635. [Google Scholar] [CrossRef]
- Ng, C.; Veidt, M.; Lam, H. Guided wave damage characterisation in beams utilising probabilistic optimisation. Eng. Struct. 2009, 31, 2842–2850. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, D.M.; Mitra, M. Nonlinear analysis of flexural wave propagation through 1D waveguides with a breathing crack. J. Sound Vib. 2015, 344, 242–257. [Google Scholar] [CrossRef]
- Sridaran Venkat, R.; Rathod, V.; Mahapatra, D.; Boller, C. Simulation von Sensorsystemen zur Inspektion von Bauteilstrukturen im Sinne eines Structural Health Monitoring. In Proceedings of the Annual Conference of German Society for Non-Destructive Testing (DGZFP), Salzburg, Austria, 11–13 May 2015; pp. 1–8. [Google Scholar]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 1–28. [Google Scholar] [CrossRef]
- Nazeer, N.; Ratassepp, M.; Fan, Z. Damage detection in bent plates using shear horizontal guided waves. Ultrasonics 2017, 75, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, N. Numerical Study on Guided Wave Propagation in Wood Utility Poles: Finite Element Modelling and Parametric Sensitivity Analysis. Appl. Sci. 2017, 7, 1063. [Google Scholar] [Green Version]
- Martinez, M.; Pant, S.; Yanishevsky, M.; Backman, D. Residual stress effects of a fatigue crack on guided Lamb waves. Smart Mater. Struct. 2017, 26, 1–16. [Google Scholar] [CrossRef]
- Kudela, P.; Radzieński, M.; Ostachovicz, W.; Yang, Z. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array. Mech. Syst. Signal Process. 2018, 108, 21–23. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A. Damage Detection in Thin Plates and Aerospace Structures with the Electro-Mechanical Impedance Method. Struct. Health Monit. 2005, 4, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, D.; Neupane, K.; Thapa, C.; Ramanjaneyulu, G. Different techniques of structural health monitoring. Int. J. Civ. Struct. Infrastruct. Eng. Res. Dev. 2013, 3, 55–66. [Google Scholar]
- Ludwig, R.; Lord, W. Afbeams-element formulation for the study of ultrasonic NDT systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Kishore, N.; Sridhar, I.; Iyengar, N. Finite element modelling of the scattering of ultrasonic waves by isolated flaws. NDT E Int. 2000, 33, 297–305. [Google Scholar] [CrossRef]
- Shah, S.; Popovics, J.; Subramaniam, K.; Aldea, C. New Directions in Concrete Health Monitoring Technology. J. Eng. Mech. 2000, 126, 754–760. [Google Scholar] [CrossRef]
- Rizzo, P.; Lanza di Scalea, F. Feature Extraction for Defect Detection in Strands by Guided Ultrasonic Waves. Struct. Health Monit. 2006, 5, 297–308. [Google Scholar] [CrossRef]
- Broda, D.; Staszewski, W.; Martowicz, A.; Uhl, T.; Silberschmidt, V. Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound—A review. J. Sound Vib. 2014, 333, 1097–1118. [Google Scholar] [CrossRef]
- Ravi, N.; Rathod, V.; Chakraborty, N.; Mahapatra, D.R.; Sridaran, R.; Boller, C. Modeling ultrasonic NDE and guided wave based structural health monitoring. In Proceedings of the Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure, San Diego, CA, USA, 9–12 March 2015. [Google Scholar]
- Murayama, H.; Kageyama, K.; Naruse, H.; Shimada, A.; Uzawa, K. Application of Fiber-Optic Distributed Sensors to Health Monitoring for Full-Scale Composite Structures. J. Intell. Mater. Syst. Struct. 2003, 14, 3–13. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Cuc, C. Embedded Non-destructive Evaluation for Structural Health Monitoring, Damage Detection, and Failure Prevention. Shock Vib. Dig. 2005, 37, 83–105. [Google Scholar] [CrossRef]
- Montalvao, D.; Maia, N.; Ribeiro, A. A Review of Vibration-based Structural Health Monitoring with Special Emphasis on Composite Materials. Shock Vib. Dig. 2006, 38, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Reda Taha, M.; Noureldin, A.; Lucero, J.; Baca, T. Wavelet Transform for Structural Health Monitoring: A Compendium of Uses and Features. Struct. Health Monit. 2006, 5, 267–295. [Google Scholar] [CrossRef]
- Nichols, J.; Trickey, S.; Seaver, M.; Moniz, L. Use of Fiber-optic Strain Sensors and Holder Exponents for Detecting and Localizing Damage in an Experimental Plate Structure. J. Intell. Mater. Syst. Struct. 2007, 18, 51–67. [Google Scholar] [CrossRef]
- Boller, C.; Chang, F.; Fujino, Y. (Eds.) Encyclopedia of Structural Health Monitoring; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Gopalakrishnan, S.; Chakraborty, A.; Roy Mahapatra, R. Spectral Finite Element Method; Springer: London, UK, 2008. [Google Scholar]
- Ham, S.; Bathe, K. A finite element method enriched for wave propagation problems. Comput. Struct. 2012, 94–95, 1–12. [Google Scholar] [CrossRef]
- Jaleel, K.; Kishore, N.; Sundararajan, V. Finite-element simulation of elastic wave propagation in orthotropic composite materials. Mater. Eval. 1993, 51, 830–838. [Google Scholar]
- Komijani, M.; Gracie, R. An enriched finite element model for wave propagation in fractured media. Finite Elem. Anal. Des. 2017, 125, 14–23. [Google Scholar] [CrossRef]
- Simonetti, F.; Cawley, P. On the nature of shear horizontal wave propagation in elastic plates coated with viscoelastic materials. Proc. R. Soc. A 2004, 204, 2197–2221. [Google Scholar] [CrossRef]
- Cheney, E. Introduction to Approximation Theory; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Rivlin, T. An Introduction to the Approximation of Functions; Blaisdell Publishing Co.: Toronto, ON, Canada, 1969. [Google Scholar]
- Trefethen, L. Approximation Theory and Approximation Practice; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Pinkus, A. Weierstrass and approximation Theory. J. Approx. Theory 2000, 107, 1–66. [Google Scholar] [CrossRef]
- Sneddon, I. Fourier Transform; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Sneddon, I. Elements of Partial Differential Equations; Dover Publications, Inc.: Mineola, NY, USA, 2006. [Google Scholar]
- Conway, H.; Jakubowski, M. Axial impact of short cylindrical bars. J. Appl. Mech. 1969, 36, 809–813. [Google Scholar] [CrossRef]
- Davies, R. Acritbars study of the Hopkinson pressure bar. Philos. Trans. R. Soc. 1948, 240, 375–457. [Google Scholar] [CrossRef]
- Hsieh, D.; Kolsky, H. An experimental study of pulse propagation in elastic cylinders. Proc. Philos. Soc. 1958, 71, 608–612. [Google Scholar] [CrossRef]
- Cooley, J.; Turkey, J. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Wikipedia, N. Solution methods of numerical partial differential equations. Wikipedia Internet Resour. 2018, 1, 1–2. [Google Scholar]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.; Ahmad, Z. Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review. Appl. Mech. Rev. 2015, 67, 010803. [Google Scholar] [CrossRef] [Green Version]
- Shizgal, B. Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics; Springer Science+Business Media: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Gottlieb, D.; Orszag, S. Numerical Analysis of Spectral Methods: Theory and Applications; SIAM-CBMS: Philadelphia, PA, USA, 1977. [Google Scholar]
- Clouteau, D.; Cottereau, R.; Lombaert, G. Dynamics of structures coupled with elastic media—A review of numerical models and methods. J. Sound Vib. 2013, 332, 2415–2436. [Google Scholar] [CrossRef] [Green Version]
- Karniadakis, G.; Sherwin, S. Spectral/hp Element Methods for Computational Fluid Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Gopalakrishnan, S.; Mitra, M. Wavelet Methods for Dynamical Problems; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Akhras, G.; Li, W. Stability and free vibration analysis of thick piezoelectric composite plates using spline finite strip method. Int. J. Mech. Solids 2011, 53, 575–584. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1D waveguides. Int. J. Solids Struct. 2005, 42, 4695–4721. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Extraction of wave characteristics from wavelet-based spectral finite element formulation. Mech. Syst. Signal Process. 2006, 20, 2046–2079. [Google Scholar] [CrossRef]
- Mitrou, G.; Ferguson, N.; Renno, J. Wave transmission through two-dimensional structures by the hybrid FE/WFE approach. J. Sound Vib. 2017, 389, 484–501. [Google Scholar] [CrossRef] [Green Version]
- Waki, Y.; Mace, B.; Brennan, M. Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J. Sound Vib. 2009, 327, 92–108. [Google Scholar] [CrossRef]
- Shen, Y.; Giurgiutiu, V. Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 2015, 58, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Cesnik, C. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 2017, 74, 106–123. [Google Scholar] [CrossRef] [PubMed]
- Sad Saoud, K.; Le Grognec, P. A unified formulation for the biaxial local and global buckling analysis of sandwich panels. Thin-Walled Struct. 2014, 82, 13–23. [Google Scholar] [CrossRef]
- Takei, A.; Brau, F.; Roman, B.; Bico, J. Stretch-induced wrinkles in reinforced membranes: From out-of-plane to in-plane structures. Europhys. Lett. 2011, 96, 64001. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; So, R. Timoshenko beam theory: A perspective based on the wave-mechanics approach. Wave Motion 2015, 57, 64–87. [Google Scholar] [CrossRef]
- Faccioli, E.; Maggio, F.; Paolucci, R.; Quarteroni, A. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1997, 1, 237–251. [Google Scholar] [CrossRef]
- Pau, A.; Achillopoulou, D.; Vestroni, F. Scattering of guided shear waves in plates with discontinuities. NDT E Int. 2016, 84, 67–75. [Google Scholar] [CrossRef]
- Doyle, J. Wave Propagation in Structures. Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Rekatsinas, C.S.; Nastos, C.V.; Theodosiou, T.C.; Saravanos, D.A. A time-domain high-order spectral finite element for the simulation of symmetric and antisymmetric guided waves in laminated composite strips. Wave Motion 2015, 53, 1–19. [Google Scholar] [CrossRef]
- Kudela, P.; Żak, A.; Krawczuk, M.; Ostachovicz, W. Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 2007, 302, 728–745. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Żak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; Wiley and Sons: West Sussex, UK, 2012. [Google Scholar]
- Kim, Y.; Ha, S.; Chang, F.K. Time-domain spectral element method for build-in piezoelectric-actuator-induced Lamb wave propagation analysis. AIAA J. 2008, 46, 591–600. [Google Scholar] [CrossRef]
- Ha, S.; Chang, F.K. Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates. Smart Mater. Struct. 2010, 19, 015015. [Google Scholar] [CrossRef]
- Ge, L.; Wang, X.; Jin, C. Numerical modeling of PZT induced Lamb wave-based crack detection in plate-like structures. Wave Motion 2014, 51, 867–885. [Google Scholar] [CrossRef]
- Peng, H.; Meng, G.; Li, F. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. J. Sound Vib. 2009, 320, 942–954. [Google Scholar] [CrossRef]
- Żak, A.; Radzieński, M.; Krawczuk, M.; Ostachovicz, W. Damage detection strategies based on propagation of guided elastic waves. Smart Mater. Struct. 2012, 21, 1–18. [Google Scholar] [CrossRef]
- Schulte, R.T.; Fritzen, C.P.; Moll, J. Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage. In Conference Series: Material Science and Engineering; IOP Publishing: Bristol, UK, 2010; pp. 1–10. [Google Scholar]
- Rucka, M. Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Arch. Appl. Mech. 2011, 81, 1877–1888. [Google Scholar] [CrossRef]
- Patera, A. A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion. J. Comput. Phys. 1984, 54, 468–488. [Google Scholar] [CrossRef]
- Timmermans, L. Analysis of Spectral Element Methods with Application to Incompressible Flow. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1994. [Google Scholar]
- Komatitsch, D.; Vilotte, J. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 1998, 88, 368–392. [Google Scholar]
- Komatitsch, D.; Vilotte, J.; Vai, R.; Castillo-Covarrubias, J.; Sanchez-Sesma, F. The spectral element method for elastic wave equations-application to 2D and 3D seismic problems. Int. J. Numer. Methods Eng. 1999, 45, 1139–1164. [Google Scholar] [CrossRef]
- Komatitsch, D.; Barnes, C.; Tromp, J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 2000, 65, 1251–1260. [Google Scholar] [CrossRef]
- Lee, U.; Kim, J.; Leung, A. The spectral element method in structural dynamics. Shock Vib. 2000, 32, 451–465. [Google Scholar] [CrossRef]
- Seriani, G.; Oliveira, S. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 2008, 45, 729–744. [Google Scholar] [CrossRef]
- Zhong, W.; Howson, W.; Williams, F. Precise solutions for surface wave propagation in stratified material. J. Vib. Acoust. 2001, 123, 198–204. [Google Scholar] [CrossRef]
- Cho, J.; Lee, U. An FFT-based spectral analysis method for linear discrete dynamic systems with non-proportional damping. Shock Vib. 2006, 13, 595–606. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gopalakrishnan, S. A spectral finite element model for wave propagation analysis in laminated composite plate. J. Vib. Acoust. 2006, 128, 477–488. [Google Scholar] [CrossRef]
- Virieux, J.; Calandra, H.; Plessix, R. A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 2011, 59, 794–813. [Google Scholar] [CrossRef]
- Krawczuk, M.; Grabowska, J.; Palacz, M. Longitudinal wave propagation. Part I-Comparison of rod theories. J. Sound Vib. 2006, 295, 461–478. [Google Scholar] [CrossRef]
- Krawczuk, M.; Grabowska, J.; Palacz, M. Longitudinal wave propagation. Part II-Analysis of crack influence. J. Sound Vib. 2006, 295, 479–490. [Google Scholar] [CrossRef]
- Palacz, M.; Krawczuk, M.; Ostachowicz, W. Detection of additional mass in rods: Experimental and numerical investigation. Arch. Appl. Mech. 2005, 74, 820–826. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Doyle, J. Spectral super-elements for wave propagation in structures with local non-uniformities. Comput. Methods Appl. Mech. Eng. 1995, 121, 77–90. [Google Scholar] [CrossRef]
- Machado, M.; Adhikari, S.; Dos Dantos, J. A spectral approach for damage quantification in stochastic dynamic systems. Mech. Syst. Signal Process. 2017, 88, 253–273. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, H.; Zhu, X.; Ou, J. Spectral Element Modelling of Wave Propagation with Boundary and Structural Discontinuity Reflections. Adv. Struct. Eng. 2012, 15, 855–870. [Google Scholar] [CrossRef]
- Lee, U. Spectral Element Method in Structural Dynamics; John Wiley &Sons (Asia) Pte Ltd.: Singapore, 2009. [Google Scholar]
- Palacz, M.; Krawczuk, M. Analysis of longitudinal wave propagation in a cracked rod by the spectral element method. Comput. Struct. 2002, 80, 1809–1816. [Google Scholar] [CrossRef]
- Krawczuk, M.; Palacz, M.; Ostachowicz, W. Spectral Plate Element for Crack Detection with the Use of Propagating Waves. Mater. Sci. Forum 2003, 440–441, 187–194. [Google Scholar] [CrossRef]
- Krawczuk, M.; Palacz, M.; Ostachowicz, W. The dynamic analysis of a cracked Timoshenko beam by the spectral element method. J. Sound Vib. 2003, 264, 1139–1153. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Krawczuk, M.; Palacz, M. Detection of delamination in multilayer composite beams. Key Eng. Mater. 2003, 245–246, 483–490. [Google Scholar] [CrossRef]
- Palacz, M.; Krawczuk, M.; Ostachowicz, W. The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam. Compos. Struct. 2005, 68, 45–51. [Google Scholar] [CrossRef]
- Palacz, M.; Krawczuk, M.; Ostachowicz, W. The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 1: Laminated multilayer composite beam. Compos. Struct. 2005, 68, 37–44. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assesment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Sarvestan, V.; Mirdamadi, H.; Ghayour, M. Vibration analysis of cracked Timoshenko beam under moving load with constant velocity and acceleration by spectral finite element method. Int. J. Mech. Sci. 2017, 122, 318–330. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gopalakrishnan, S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 2003, 40, 2421–2448. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gopalakrishnan, S. A higher-order spectral element for wave propagation analysis in functionally graded materials. Acta Mech. 2004, 172, 17–43. [Google Scholar] [CrossRef]
- Joglekar, D.M.; Mitra, M. Analysis of flexural wave propagation through beams with a breathing crack using wavelet spectral finite element method. Mech. Syst. Signal Process. 2016, 76, 576–591. [Google Scholar] [CrossRef]
- Ajith, V.; Gopalakrishnan, S. Wave propagation in a porous composite beam: Porosity determination, location and quantification. Int. J. Solids Struct. 2013, 50, 556–569. [Google Scholar] [CrossRef]
- Ahmida, K.; Arruda, J. On the relation between complex modes and wave propagation phenomena. J. Sound Vib. 2002, 255, 663–684. [Google Scholar] [CrossRef]
- Ruzzene, M.; Hanagud, S. Computational Techniques for Structural Health Monitoring; chapter Spectral Finite Element Method; Springer: London, UK, 2011; pp. 177–217. [Google Scholar]
- Amaratunga, K.; Wiliams, J. Time integration using wavelet. In Proceedings of the SPIE, Wavelet Application for Dual Use, Orlando, FL, USA, 17–21 April 1995; Volume 2491, pp. 894–902. [Google Scholar]
- Amaratunga, K.; Wiliams, J. Wavelet-Galerkin solution of boundary valur problems. Arch. Comput. Methods Eng. 1997, 4, 234–285. [Google Scholar] [CrossRef]
- Williams, J.; Amaratunga, K. A discrete wavelet transform without edge effects using wavelet extrapolation. J. Fourier Anal. Appl. 2003, 3, 435–449. [Google Scholar] [CrossRef]
- Wang, G.; Unal, A. Free vibration of stepped thicthick rectangular plates using spectral finite element method. J. Sound Vib. 2013, 332, 4324–4338. [Google Scholar] [CrossRef]
- Park, I.; Kim, T.; Lee, U. Frequency Domain Spectral Element Model for the Vibration Analysis of a Thin Plate with Arbitrary Boundary Conditions. Math. Probl. Eng. 2016, 2016, 1–21. [Google Scholar] [CrossRef]
- Bahrami, S.; Shirmohammadi, F.; Saadatpour, M. Vibration analysis of thin shallow shell using spectral element method. Appl. Math. Model. 2017, 44, 470–480. [Google Scholar] [CrossRef]
- Boyd, J. Chebyshew and Fourier Spectral Methods; Dover Publications, Inc.: Mineola, NY, USA, 2000. [Google Scholar]
- Rucka, M. Guided Wave Propagation in Structures. Modelling, Experimental Studies and Application to Damage Detection; Politechnika Gdańska: Gdańska, Poland, 2011. [Google Scholar]
- Żak, A.; Krawczuk, M. Assessment of rod behaviour theories used in spectral finite element modelling. J. Sound Vib. 2010, 329, 2099–2113. [Google Scholar] [CrossRef]
- Żak, A.; Krawczuk, M. Certain numerical issues of wave propagation modelling in rods by the Spectral Finite Element Method. Finite Elem. Anal. Des. 2011, 47, 1036–1046. [Google Scholar] [CrossRef]
- Rucka, M. Experimental and numerical studies of guided wave damage detection in bars with structural discontinuities. Arch. Appl. Mech. 2010, 80, 1371–1390. [Google Scholar] [CrossRef]
- Żak, A.; Krawczuk, M. Assessment of flexural beam behaviour theories used for dynamics and wave propagation problems. J. Sound Vib. 2012, 331, 5715–5731. [Google Scholar] [CrossRef]
- Rucka, M. Experimental and numerical study on damage detection in an L-joint using guided wave propagation. J. Sound Vib. 2010, 329, 1760–1779. [Google Scholar] [CrossRef]
- Żak, A.; Krawczuk, M. A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures. Finite Elem. Anal. Des. 2018, 142, 17–29. [Google Scholar] [CrossRef]
- Żak, A.; Krawczuk, M. Static and dynamic analysis of isotropic shell structures by the spectral finite element method. Mod. Pract. Stress Vib. Anal. 2012, 382, 1–6. [Google Scholar] [CrossRef]
- Żak, A. A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elem. Anal. Des. 2009, 45, 650–658. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, N.; Yan, C.; Peng, X.; Yan, B. Construction of a Mindlin pseudospectral plate element and evaluating efficiency of the element. Finite Elem. Anal. Des. 2009, 45, 538–546. [Google Scholar] [CrossRef]
- Hennings, B.; Lammering, R.; Gabbert, U. Numerical simulation of wave propagation using spectral finite elements. CEAS Aeronaut J. 2013, 4, 3–10. [Google Scholar] [CrossRef]
- Brito, K.; Sprague, M. Reissner-Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem. Anal. Des. 2012, 58, 74–83. [Google Scholar] [CrossRef]
- Sprague, M.; Purkayastha, A. Legendre spectral finite element for Reissner-Mindlin composite plates. Finite Elem. Anal. Des. 2015, 105, 33–43. [Google Scholar] [CrossRef]
- De Basabe, J.; Sen, M. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid–solid interface. Geophys. J. Int. 2015, 200, 278–298. [Google Scholar] [CrossRef]
- Xu, C.; Yu, Z. Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method. Adv. Mech. Eng. 2017, 9, 1–17. [Google Scholar] [CrossRef]
- Rucka, M.; Witkowski, W.; Chróścielewski, J.; Burzyński, S.; Wilde, K. A novel formulation of 3D spectral element for wave propagation in reinforced concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Ostachowicz, W.; Kudela, P. Wave Propagation Numerical Models in Damage Detection Based in the Tine Domain Spectral Element Method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2010; Volume 10, pp. 1–10. [Google Scholar]
- Bottero, A.; Cristini, P.; Komatitsch, D. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics. J. Acoust. Soc. Am. 2016, 140, 3520–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaratunga, D.; Jha, R.; Gopalakrishnan, S. Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Compos. Struct. 2014, 108, 341–353. [Google Scholar] [CrossRef]
- Samaratunga, D.; Jha, R.; Gopalakrishnan, S. Wavelet spectral finite element for modeling guided wave propagation and damage detection in stiffened composite panels. Struct. Health Monit. 2016, 15, 317–334. [Google Scholar] [CrossRef]
- Khalili, A.; Samaratunga, D.; Jha, R.; Lacy, T.; Gopalakrishnan, S. Wavelet Spectral Finite Element Based User-Defined Element in ABAQUS for Modeling Delamination in Composite Beams. In Proceedings of the 23rd AIAA/AHS Adaptive Structures Conference, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Khalili, A.; Jha, R.; Samaratunga, D. The Wavelet Spectral Finite Element-based user-defined element in Abaqus for wave propagation in one-dimensional composite structures. Trans. Soc. Model. Simul. Int. 2017, 93, 1–10. [Google Scholar] [CrossRef]
Method | Example |
---|---|
finite difference | e.g., parabolic, hyperbolic, finite-difference time-domain |
finite volume | e.g., high-resolution |
finite element | e.g., finite element, spectral element |
meshless (meshfree) | e.g., material point |
domain decompositions | e.g., fictitious domain |
others | e.g., methods of lines, boundary element, wavelet method |
Numerical Method Employed | References |
---|---|
FDSFEM for 1D elements | [79,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120] |
FDSFEM for 2D elements | [79,121,122,123,124,125,126,127] |
TDSFEM for 1D elements | [82,128,129,130,131,132,133,134] |
TDSFEM for 2D elements | [82,87,135,136,137,138,139,140,141,142,143] |
TDSFEM for 3D elements | [82,85,144,145,146] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacz, M. Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review. Appl. Sci. 2018, 8, 1124. https://doi.org/10.3390/app8071124
Palacz M. Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review. Applied Sciences. 2018; 8(7):1124. https://doi.org/10.3390/app8071124
Chicago/Turabian StylePalacz, Magdalena. 2018. "Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review" Applied Sciences 8, no. 7: 1124. https://doi.org/10.3390/app8071124
APA StylePalacz, M. (2018). Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review. Applied Sciences, 8(7), 1124. https://doi.org/10.3390/app8071124