Development of Hybrid Airlift-Jet Pump with Its Performance Analysis
Abstract
:1. Introduction
2. New Concept of Hybrid Airlift-Jet Pump
2.1. Operating Principle of Jet Pump
2.2. Operating Principle of Airlift Pump
2.3. Operating Principle of Hybrid Pump
3. Governing Equations and Numerical Methods
4. Models of Target Pump
4.1. Geometry Ejector
4.2. Mesh and Boundary Conditions
5. Results and Discussion
5.1. Validation of Numerical Methods
5.2. Performance and Efficiency of Hybrid Pump
5.3. Pressure and Velocity Distributions inside Hybrid Pump
5.4. Periodic Fluctuation of Water Flow
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rankine, W.J.M. On the mathematical theory of combined streams. Proc. R. Soc. Lond. 1870, 19, 90–94. [Google Scholar]
- Keenan, J.H. An investigation of ejector design by analysis and experiment. J. Appl. Mech. 1950, 17, 299–318. [Google Scholar]
- Eames, I.W.; Aphornratana, S.; Haider, H. A theoretical and experimental study of a small-scale steam jet refrigerator. Int. J. Refrig. 1995, 18, 378–386. [Google Scholar]
- Huang, B.J.; Chang, J.M.; Wang, C.P.; Petrenko, V.A. A 1-D analysis of ejector performance. Int. J. Refrig. 1999, 22, 354–364. [Google Scholar]
- Riffat, S.B.; Gan, G.; Smith, S. Computational fluid dynamics applied to ejector heat pumps. Appl. Therm. Eng. 1996, 16, 291–297. [Google Scholar] [CrossRef]
- Riffat, S.B.; Omer, S.A. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the operating fluid. Int. J. Energy Res. 2001, 25, 115–128. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, W.; Wen, C.; Li, Y. Numerical investigation of geometry parameters for design of high performance ejectors. Appl. Therm. Eng. 2009, 29, 898–905. [Google Scholar]
- Li, C.; Li, Y.Z. Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation. Chem. Eng. Sci. 2011, 66, 405–416. [Google Scholar]
- Fan, J.; Eves, J.; Thompson, H.M.; Toropov, V.V.; Kapur, N.; Copley, D.; Mincher, A. Computational fluid dynamic analysis and design optimization of jet pumps. Comput. Fluids 2011, 46, 212–217. [Google Scholar] [CrossRef]
- Shah, A.; Chughtai, I.R.; Inayat, M.H. Experimental and numerical analysis of steam jet pump. Int. J. Heat Fluid Flow 2011, 37, 1305–1314. [Google Scholar] [CrossRef]
- Shah, A.; Khan, A.H.; Chughtai, I.R.; Inayat, M.H. Numerical and experimental study of steam-water two-phase flow through steam jet pump. Asia Pac. J. Chem. Eng. 2013, 8, 895–905. [Google Scholar] [CrossRef]
- Narabayashi, T.; Wataru, M.; Michitugu, M. Study on two-phase flow dynamics in steam injectors. Nucl. Eng. Des. 1997, 175, 147–156. [Google Scholar] [CrossRef]
- Narabayashi, T.; Mori, M.; Nakamaru, M.; Ohmori, S. Study on two-phase flow dynamics in steam injectors: II. High-pressure tests using scale-models. Nucl. Eng. Des. 2000, 200, 261–271. [Google Scholar] [CrossRef]
- Bartosiewicz, Y.; Aidoun, Z.; Desevaux, P.; Mercadier, Y. Numerical and experimental investigations on supersonic ejectors. Int. J. Heat Fluid Flow 2005, 26, 56–70. [Google Scholar] [CrossRef]
- Yan, J.J.; Shao, S.F.; Liu, J.P.; Zhang, Z. Experiment and analysis on performance of steam-driven jet injector for district-heating system. Appl. Therm. Eng. 2005, 25, 1153–1167. [Google Scholar] [CrossRef]
- Chong, D.T.; Yan, J.; Wu, G.; Liu, J. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas. Appl. Therm. Eng. 2009, 29, 2799–2807. [Google Scholar] [CrossRef]
- Kassab, S.Z.; Kandil, H.A.; Warda, H.A.; Ahmed, W.H. Air-lift pumps characteristics under two-phase flow conditions. Int. J. Heat Fluid Flow 2009, 30, 88–98. [Google Scholar] [CrossRef]
- Taitel, Y.; Bornea, D.; Dukler, A.E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 1980, 26, 345–354. [Google Scholar] [CrossRef]
- De Cachard, F.; Delhaye, J.M. A slug-churn flow model for small-diameter airlift pumps. Int. J. Multiph. Flow 1996, 22, 627–649. [Google Scholar] [CrossRef]
- Furukawa, T.; Fukano, T. Effects of liquid viscosity on flow patterns in vertical upward gas–liquid two-phase flow. Int. J. Multiph. Flow 2001, 27, 1109–1126. [Google Scholar] [CrossRef]
- Fujimoto, H.; Ogawa, S.; Takuda, H.; Hatta, N. Operation performance of a small air-lift pump for conveying solid particles. J. Energy Resour. Technol. 2003, 125, 17–25. [Google Scholar] [CrossRef]
- Khalil, M.F.; Elshorbagy, K.A.; Kassab, S.Z.; Fahmy, R.I. Effect of air injection method on the performance of an air lift pump. Int. J. Heat Fluid Flow 1999, 20, 598–604. [Google Scholar] [CrossRef]
- Cheong, C.; Lee, I. Airlift and Jet Combined Pump. Patent Number P20170450KR-01, 11 July 2018. [Google Scholar]
- Kim, S.; Cheong, C.; Park, W.-G. Numerical investigation on cavitation flow of hydrofoil and it flow noise with emphasis on turbulence models. AIP Adv. 2017, 7, 065114. [Google Scholar] [CrossRef]
- Available online: http://www.seowonco.co.kr/bbs/board.php?bo_table=product03&wr_id=12 (accessed on 19 August 2018).
- Available online: http://www.wisecontrol.com/home/info/713 (accessed on 19 August 2018).
- Kim, K.S.; Ku, G.R.; Lee, S.J.; Park, S.G.; Cheong, C. Wavenumber-frequency analysis of internal aerodynamic noise in constriction-expansion pipe. Appl. Sci. 2017, 7, 1137. [Google Scholar] [CrossRef]
Air nozzle inlet diameter | 6.5 |
Air nozzle diameter | 24 |
Air nozzle exit diameter | 8 |
Water nozzle diameter | 50 |
Distance between an air nozzle exit and a mixing section | 25 |
Mixing section diameter | 24 |
Diffuser outlet diameter | 34 |
Mixing section and diffuser length | 200 |
Case No. | Total Pressure at Air Inlet (kPa)-Air Compressor | Total Pressure at Water Inlet (kPa)-Water Height | Volume Fraction of Water at Water Inlet-Airlift Pump |
---|---|---|---|
1 | 100 | 1 | 1 |
2 | 200 | ||
3 | 300 | ||
4 | 400 | ||
5 | 100 | 6 | 1 |
6 | 200 | ||
7 | 300 | ||
8 | 400 | ||
9 | 100 | 1 | 0.5 |
10 | 200 | ||
11 | 300 | ||
12 | 400 | ||
13 | 300 | 6 | 0.5 |
14 | 300 | 1 | 0.05 |
15 | 0.1 | ||
16 | 0.2 | ||
17 | 0.7 | ||
18 | 0.9 |
Case No. | Static Pressure at Air Inlet (kPa) | Maximum Mach Number |
---|---|---|
No. 1 | 41.8 | 0.70 |
No. 2 | 104.0 | 1.00 |
No. 3 | 168.1 | 1.24 |
No. 4 | 233.7 | 1.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Lee, K.; Ha, M.; Cheong, C.; Lee, I. Development of Hybrid Airlift-Jet Pump with Its Performance Analysis. Appl. Sci. 2018, 8, 1413. https://doi.org/10.3390/app8091413
Yao D, Lee K, Ha M, Cheong C, Lee I. Development of Hybrid Airlift-Jet Pump with Its Performance Analysis. Applied Sciences. 2018; 8(9):1413. https://doi.org/10.3390/app8091413
Chicago/Turabian StyleYao, Dan, Kwongi Lee, Minho Ha, Cheolung Cheong, and Inhiug Lee. 2018. "Development of Hybrid Airlift-Jet Pump with Its Performance Analysis" Applied Sciences 8, no. 9: 1413. https://doi.org/10.3390/app8091413
APA StyleYao, D., Lee, K., Ha, M., Cheong, C., & Lee, I. (2018). Development of Hybrid Airlift-Jet Pump with Its Performance Analysis. Applied Sciences, 8(9), 1413. https://doi.org/10.3390/app8091413