Sensitivity Analysis for Ship-to-Shore Container Crane Design
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology of Sensitivity Analysis
3. Sources of Uncertainty
3.1. Uncertainty in Ground Motion Intensity and Method of Intensity Selection
3.2. Uncertainty in Ground Motion Profile
3.3. Uncertainty in Material Properties
3.4. Uncertainty in Mass
3.5. Uncertainty in Damping Ratio
4. Analysis of Korea Container Crane
4.1. Container Crane Descriptions
4.2. Selection of Ground Motions
4.3. Fast Nonlinear Analysis (FNA)
4.4. Sensitivity Analysis for Container Crane
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kosbab, B.D.; Leon, R.T.; DesRoches, R. Seismic behavior considerations for jumbo container cranes. In Structures Congress 2009: Don’t Mess with Structural Engineers—Expanding Our Role; American Society Civil Engineers: Reston, VA, USA, 2009. [Google Scholar]
- Jordan, M.A. Future-Proof Your Crane; Liftech Consultants Inc.: Oakland, CA, USA, 2001; Available online: http://www.liftech.net/wp-content/uploads/2001/10/Future-Proof-Your-Crane.pdf (accessed on 17 July 2018).
- Bhimani, A.; Soderberg, E. Crane Loads & Wharf Structure Design: Putting the Two Together. Presented at AAPA Facilities Engineering Seminar, Jacksonville, FL, USA, 11 January 2006. [Google Scholar]
- Porter, K.A.; Beck, J.L.; Shaikhutdinov, R.V. Sensitivity of Building Loss Estimates to Major Uncertain Variables. Earthq. Spectra 2012, 18, 719–743. [Google Scholar] [CrossRef]
- Kosbab, B.D. Seismic Performance Evaluation of Port. Container Cranes Allowed to Uplift; Georgia Institute of Technology: Atlanta, GA, USA, 2010. [Google Scholar]
- Lee, T.-H.; Mosalam, K.M. Sensitivity of Seismic Demand of a Reinforced Concrete Shear-Wall Building. Presented at Ninth International Conference on Application of Statistics and Probability in Civil Engineering (ICASP 9), San Francisco, CA, USA, 6–9 July 2003. [Google Scholar]
- Lee, T.-H.; Mosalam, K.M. Probabilistic Seismic Evaluation of Reinforced Concrete Structural Components and Systems; University of California: Berkeley, CA, USA, 2006. [Google Scholar]
- Porter, K.A.; Beck, J.L.; Shaikhutdinov, R.V. Investigation of Sensitivity of Building Loss Estimates to Major Uncertain Variables for the Van Nuys Testbed; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2002. [Google Scholar]
- Lee, D.H.; Kim, B.H.; Jeong, S.H.; Jeon, J.S.; Lee, T.H. Seismic fragility analysis of a buried gas pipeline based on nonlinear time-history analysis. Int. J. Steel Struct. 2016, 16, 231–242. [Google Scholar] [CrossRef]
- Haldar, A.; Mahadevan, S. Reliability Assessment Using Stochastic Finite Element Analysis; John Wiley & Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Kanayama, T.; Kashiwazaki, A. An Evaluation of Uplifting Behavior of Container Cranes Under Strong Earthquakes. Trans. Jpn. Soc. Mech. Eng. 1998, 64, 100–106. (In Japanese) [Google Scholar]
- Dinevski, D.; Oblak, M.; Novak, A. Experimental Verification of the Container Crane Natural Frequancies. WIT Trans. Model. Simul. 1997, 16, 245–254. [Google Scholar]
- Korean Building Code; Architectural Institute of Korea: Seoul, Korea, 2016.
- Davoodi, M.; Sadjadi, M.; Goljahani, P.; Kamalian, M. Effects of Near-Field and Far-Field Earthquakes on Seismic Response of SDOF System Considering Soil Structure Interaction. Presented at 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- United States Army Corps of Engineers (USACE). Time History of Dynamic Analysis of Concrete Hydraulic Structures; Department of the Army: Washington, DC, USA, 2003. [Google Scholar]
- Chopra, A.; Chintanapakdee, C. Comparing Response of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions Earthq. Eng. Struct. Dyn. 2001, 30, 1769–1789. [Google Scholar] [CrossRef]
- NEHRP Recommended Provisions for New Buildings and Other Structures: Training and Instructional Materials; Federal Emergency Management Agency and National Institute of Building Sciences: Washington, DC, USA, 2007.
- Galambos, T.; Ravindra, M. Properties of Steel for Use in LRFD. J. Struct. Div. 1978, 104, 1459–1468. [Google Scholar]
- Liu, J.; Sabelli, R.; Brockenbrough, R.; Fraser, T. Expected Yield Stress and Tensile Strength Ratios for Determination of Expected Member Capacity in the 2005 AISC Seismic provisions. Eng. J. 2007, 44, 15–25. [Google Scholar]
- Kohama, E.; Takenobu, M.; Sugano, T.; Ohya, Y. Field Experiment on a Damping Characteristic of Actual Container Cranes. Presented at 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Taoko, G. Damping Measurements of Tall Structures. In Proceedings of the Second Specialty Conference on Dynamic Response of Structures: Experimentation, Observation, Prediction, and Control, Atlanta, GA, USA, 15–16 January 1981. [Google Scholar]
- Jacobs, L.; Kosbab, B.; Leon, R.; DesRoches, R. Seismic Behavior of a Jumbo Container Crane Including Uplift. Earthq. Spectra 2011, 27, 745–773. [Google Scholar]
- Tran, Q.H.; Huh, J.; Nguyen, V.B.; Haldar, A.; Kang, C.; Hwang, K.M. Comparative Study of Nonlinear Static and Time-History Analyses of Typical Korean STS Container Cranes. Adv. Civ. Eng. 2018, 2018, 2176894. [Google Scholar] [CrossRef]
- Balkema, A.A. Seismic Desing Guidelines for Port Structures; PIANC: Brussels, Belgium, 2001. [Google Scholar]
- Huh, J.; Haldar, A.; Yim, S. Effect of Uncertainty in Frequency Content and Strong Motion Duration on Structural Seismic Risks. Int. J. Syst. Eng. 2012, 2, 25–37. [Google Scholar]
- Wilson, E. Three-Dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering, 2nd ed.; Computers and Structures Inc.: Berkeley, CA, USA, 1998. [Google Scholar]
- Linear and Nonlinear Static and Dynamic Analysis and Design of 3D Structures; Computers and Structures Inc.: Berkeley, CA, USA, 2006.
- Huh, J.; Tran, Q.H.; Haldar, A.; Park, I.; Ahn, J.-H. Seismic Vulnerability Assessment of a Shallow Two-Story Underground RC Box Structure. Appl. Sci. 2017, 7, 735. [Google Scholar] [CrossRef]
- ASCE/SEI 41, Seismic Evaluation and Retrofit of Existing Buildings; American Society of Civil Engineers: Reston, VA, USA, 2013.
- Caltrans. Seismic Design Criteria (Version 1.7); California Department of Transportation: Sacramento, CA, USA, 2013.
- Sullivan, L. The Role of Probability; Boston University: Boston, MA, USA; Available online: http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Probability/ (accessed on 29 June 2018).
Random Variables | Unit | Distribution | Mean | Coefficient of Variation (COV) |
---|---|---|---|---|
Yield strength of steel for JIS-SM490Y | ||||
Thickness t ≤ 16 mm | MPa | Normal | 365 | 0.07 |
16 mm < t ≤ 40 mm | MPa | Normal | 355 | 0.07 |
t > 40 mm | MPa | Normal | 335 | 0.07 |
Yield strength of steel for JIS-STK490 | MPa | Normal | 313 | 0.07 |
Young’s modulus of both steel types | GPa | Normal | 200 | 0.06 |
Number | Items | Weight (kN) |
---|---|---|
1 | Structural frame | 10,777.6 |
2 | Nonstructural loads | 3062.8 |
Total | 13,840.4 |
Soil Type | Unit Weight, γ (kN/m3) | Shear Wave Velocity, vs (m/s) | Shear Modulus, G (MPa) | Poisson’s Ratio, ν | |
---|---|---|---|---|---|
Buried layer | Riprap | 19 | 345 | 2.47 × 102 | - |
Sand | 18 | 323 | 2.06 × 102 | 0.35 | |
Pebble | 18 | 295 | 1.67 × 102 | 0.35 | |
Sediment | Clay | 17 | 203 | 3.34 × 106 | 0.33 |
Pebble | 19 | 379 | 2.31 × 107 | 0.33 | |
Weathered soil | 19 | 542 | 5.84 × 107 | 0.33 | |
Weathered rock | 20 | 471 | 1.71 × 108 | 0.30 | |
Soft rock | 23 | 1265 | 6.69 × 108 | 0.28 |
Ground Motion (GM) | Earthquake Name | Year | Station Name | Magnitude | PGA (g) | Sai (T) (g) |
---|---|---|---|---|---|---|
1 | Imperial Valley-02 | 1940 | Elcentro Array #09 | 6.95 | 0.28 | 0.23 |
2 | Imperial Valley-02 | 1940 | Elcentro Array #09 | 6.95 | 0.21 | 0.25 |
3 | Imperial Valley-06 | 1979 | Elcentro Array #06 | 6.53 | 0.45 | 0.39 |
4 | Imperial Valley-06 | 1979 | Elcentro Array #06 | 6.53 | 0.45 | 0.40 |
5 | Landers | 1992 | Barstow | 7.28 | 0.13 | 0.11 |
6 | Landers | 1992 | Barstow | 7.28 | 0.14 | 0.12 |
7 | Landers | 1992 | Yermo Fire sta. | 7.28 | 0.24 | 0.53 |
8 | Landers | 1992 | Yermo Fire sta. | 7.28 | 0.15 | 0.32 |
9 | Loma Prieta | 1989 | Gilroy-Gavilan Coll. | 6.93 | 0.36 | 0.23 |
10 | Loma Prieta | 1989 | Gilroy-Gavilan Coll. | 6.93 | 0.33 | 0.09 |
11 | Northridge-01 | 1994 | Newhall-Fire sta. | 6.69 | 0.58 | 0.68 |
12 | Northridge-01 | 1994 | Newhall-Fire sta. | 6.69 | 0.59 | 0.95 |
13 | Northridge-01 | 1994 | Rinaldi Receiving Sta. | 6.69 | 0.87 | 1.22 |
14 | Northridge-01 | 1994 | Rinaldi Receiving Sta. | 6.69 | 0.47 | 0.72 |
15 | Northridge-01 | 1994 | Sylmar-Converter Sta. | 6.69 | 0.62 | 0.80 |
16 | Northridge-01 | 1994 | Sylmar-Converter Sta. | 6.69 | 0.92 | 1.15 |
17 | Kobe, Japan | 1995 | KJMA | 6.9 | 0.83 | 0.92 |
18 | Kobe, Japan | 1995 | KJMA | 6.9 | 0.63 | 0.42 |
19 | Chi-Chi, Taiwan | 1999 | TCU065 | 7.62 | 0.79 | 0.80 |
20 | Chi-Chi, Taiwan | 1999 | TCU065 | 7.62 | 0.58 | 0.75 |
Number | Source of Uncertainty | Lower Bound | Median | Upper Bound | Remarks |
---|---|---|---|---|---|
1 | IM, Sa (g) | 0.07 GM-17, 19 0.081, 0.092 | 0.13 GM-9, 11 0.552, 0.188 | 0.21 GM-9, 11 0.917, 0.313 | Spectral acceleration Ground motion Scaling factor |
2 | Ground motion profile | GM-16 0.111 | GM-9 0.552 | GM-14 0.178 | Ground motion Scaling factor |
3 | Mass, Mn (ton) | 0.872 × Mn | Mn | 1.128 × Mn | Mn: nominal mass = 1 |
4 | Damping ratio, ξ (%) | 0.92 | 1.50 | 2.08 | |
5 | Elastic modulus of steel, E (GPa) | 184.6 | 200 | 215.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, Q.H.; Huh, J.; Nguyen, V.B.; Kang, C.; Ahn, J.-H.; Park, I.-J. Sensitivity Analysis for Ship-to-Shore Container Crane Design. Appl. Sci. 2018, 8, 1667. https://doi.org/10.3390/app8091667
Tran QH, Huh J, Nguyen VB, Kang C, Ahn J-H, Park I-J. Sensitivity Analysis for Ship-to-Shore Container Crane Design. Applied Sciences. 2018; 8(9):1667. https://doi.org/10.3390/app8091667
Chicago/Turabian StyleTran, Quang Huy, Jungwon Huh, Van Bac Nguyen, Choonghyun Kang, Jin-Hee Ahn, and Inn-Joon Park. 2018. "Sensitivity Analysis for Ship-to-Shore Container Crane Design" Applied Sciences 8, no. 9: 1667. https://doi.org/10.3390/app8091667
APA StyleTran, Q. H., Huh, J., Nguyen, V. B., Kang, C., Ahn, J.-H., & Park, I.-J. (2018). Sensitivity Analysis for Ship-to-Shore Container Crane Design. Applied Sciences, 8(9), 1667. https://doi.org/10.3390/app8091667