Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives
Abstract
:1. Introduction
2. Experimental Methods
2.1. Carbon Black Materials
2.2. Formation of VRLA Batteries
2.3. Battery Tests following China’s Standard e-Bike Test Profile
2.3.1. Capacity Test
Two-Hour Capacity Test
Low-Temperature Capacity Performance Tests (−10 °C and −15 °C)
Larger Current Discharge (1.8 C2)
2.3.2. Charge Acceptance
2.3.3. Cycling Performance Test under 100% DoD Condition
2.4. Structural Characterization
3. Results and Discussion
3.1. Morphology and Structure of Carbon Black Additives
3.2. Performance Tests of VRLA Batteries
3.2.1. Discharge Capacity Tests
3.2.2. Charge Acceptance
3.2.3. Cycling Performance
3.2.4. Water Loss Performance
3.3. Mechanism of the Effect of Adding Carbon Black on the Negative Plate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Hu, C.; Wang, H.; Yang, K.; Liu, J.B. Review on the research of failure modes and mechanism for lead-acid batteries: Reviews on the research of failure modes for lead-acid batteries. Int. J. Energy Res. 2017, 41, 336–352. [Google Scholar] [CrossRef]
- Lam, L.T.; Newnham, R.H.; Ozgun, H.; Fleming, F.A. Advanced design of valve-regulated lead–acid battery for hybrid electric vehicles. J. Power Sources 2000, 88, 92–97. [Google Scholar] [CrossRef]
- Zheng, S.; Jia, G.; Xue, W.; Huang, B. Performance of a lead–carbon negative electrode based on a Pb–C electrodeposited porous graphite/Pb conductive net skeleton. Micro Nano Lett. 2016, 11, 264–268. [Google Scholar] [CrossRef]
- Huang, T.; Ou, W.; Feng, B.; Huang, B.; Liu, M.; Zhao, W.; Guo, Y. Researches on current distribution and plate conductivity of valve-regulated lead-acid batteries. J. Power Sources 2012, 210, 7–14. [Google Scholar] [CrossRef]
- Enos, D.G.; Ferreira, S.R.; Barkholtz, H.M.; Baca, W.; Fenstermacher, S. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries. J. Electrochem. Soc. 2017, 164, A3276–A3284. [Google Scholar] [CrossRef] [Green Version]
- Muetze, A.; Tan, Y.C. Electric bicycles—A performance evaluation. Ind. Appl. Mag. IEEE 2007, 13, 12–21. [Google Scholar] [CrossRef]
- Zou, X.; Kang, Z.; Dong, S.; Liao, Y.; Gong, Y.; He, C.; Hao, J.; Zhong, Y. Effects of carbon additives on the performance of negative electrode of lead-carbon battery. Electrochim. Acta 2015, 151, 89–98. [Google Scholar] [CrossRef]
- Pavlov, D.; Nikolov, P.; Rogachev, T. Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance. J. Power Sources 2011, 196, 5155–5167. [Google Scholar] [CrossRef]
- Marom, R.; Ziv, B.; Banerjee, A.; Cahana, B.; Luski, S.; Aurbach, D. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass. J. Power Sources 2015, 296, 78–85. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, S.; Meng, G.; Yang, S. Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge. J. Power Sources 2009, 191, 127–133. [Google Scholar] [CrossRef]
- Lam, L.T.; Haigh, N.P.; Phyland, C.G.; Urban, A.J. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation. J. Power Sources 2004, 133, 126–134. [Google Scholar] [CrossRef]
- Wang, L.Z.; Zhang, K.Q.; Zhang, L.S.; Zhang, Y.; Wang, K. Effect of carbon materials on electrochemical characteristics of negative electrodes of lead-acid battery. Chin. J. Power Sources 2012, 9, 22. [Google Scholar] [CrossRef]
- Valenciano, J.; Sánchez, A.; Trinidad, F.; Hollenkamp, A.F. Graphite and fiberglass additives for improving high-rate partial-state-of-charge cycle life of valve-regulated lead-acid batteries. J. Power Sources 2006, 158, 851–863. [Google Scholar] [CrossRef]
- Jaiswal, A.; Chalasani, S.C. The role of carbon in the negative plate of the lead–acid battery. J. Energy Storage 2015, 1, 15–21. [Google Scholar] [CrossRef]
- Fernández, M.; Valenciano, J.; Trinidad, F.; Muñoz, N. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications. J. Power Sources 2010, 195, 4458–4469. [Google Scholar] [CrossRef]
- Pavlov, D.; Nikolov, P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead–acid batteries and elementary processes on cycling. J. Power Sources 2013, 242, 380–399. [Google Scholar] [CrossRef]
- Atanassova, P.; Blizanac, B.; Koehlert, K.C.; Moeser, G.D.; Oljaca, M.; Sun, Y.; Pierre, D.; Sawrey, J.S. Carbon Blacks and Use in Electrodes for Lead Acid Batteries. U.S. Patent 9,287,565[p], 15 March 2016. [Google Scholar]
- Yeung, K.K.; Zhang, X.; Ciucci, F.; Yuen, M.M.F. Enhanced Cycle Life of a Lead-acid Battery Using Graphene as a Sulfation Suppression Additive in Negative Plates. RSC Adv. 2015, 5, 71314–71321. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Su, Z.; Zhao, Y.; Zhao, X.; Wang, R. Graphene nanosheets as backbones to build a 3D conductive network for negative active materials of lead–acid batteries. J. Appl. Electrochem. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Long, Q.; Ma, G.; Xu, Q.; Ma, C.; Nan, J.; Li, A.; Chen, H. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition. J. Power Sources 2017, 343, 188–196. [Google Scholar] [CrossRef]
- Nakamura, K.; Shiomi, M.; Takahashi, K.; Tsubota, M. Failure modes of valve-regulated lead/acid batteries. J. Power Sources 1996, 59, 153–157. [Google Scholar] [CrossRef]
- Moseley, P.T.; Nelson, R.F.; Hollenkamp, A.F. The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources 2006, 157, 3–10. [Google Scholar] [CrossRef]
- Moseley, P.T. Consequences of including carbon in the negative plates of Valve-regulated Lead–Acid batteries exposed to high-rate partial-state-of-charge operation. J. Power Sources 2009, 191, 134–138. [Google Scholar] [CrossRef]
- Shiomi, M.; Funato, T.; Nakamura, K.; Takahashi, K.; Tsubota, M. Effects of carbon in negative plates on cycle-life performance of valve-regulated lead-acid batteries. J. Power Sources 1997, 64, 147–152. [Google Scholar] [CrossRef]
- Qin, C.; Ji, L.; Wu, K.; Zhang, W. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid. Sci Rep. 2016, 6, 22309. [Google Scholar]
- Gai, Y.; Shang, Y.; Gong, L.; Su, L.; Hao, L.; Dong, F.; Li, J. A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 2017, 7, 1038–1044. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Fu, Y.; He, G.; Sun, X.; Wang, X. Nitrogen-doped carbon black supported NiCo2S4 catalyst for hydrogenation of nitrophenols under mild conditions. J. Mater. Sci. 2018, 53, 4467–4481. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Kim, J.H. Green chemistry approach for the synthesis of biocompatible graphene. Int. J. Nanomed. 2013, 8, 2719–2732. [Google Scholar] [CrossRef]
- Swogger, S.W.; Everill, P.; Dubey, D.P.; Sugumaran, N. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance. J. Power Sources 2014, 261, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Hong, B.; Jiang, L.; Xue, H.; Liu, F.; Jia, M.; Li, J.; Liu, Y. Characterization of nano-lead-doped active carbon and its application in lead-acid battery. J. Power Sources 2014, 270, 332–341. [Google Scholar] [CrossRef]
- Lam, L.T.; Haigh, N.P.; Phyland, C.G.; Huynh, T.D. Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles. J. Power Sources 2005, 144, 552–559. [Google Scholar] [CrossRef]
- Xiang, J.; Ding, P.; Zhang, H.; Wu, X.; Chen, J.; Yang, Y. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation. J. Power Sources 2013, 241, 150–158. [Google Scholar] [CrossRef]
- Blecua, M.; Fatas, E.; Ocon, P.; Gonzalo, B.; Merino, C.; Fuente, F.D.L.; Valenciano, J.; Trinidad, F. Graphitized Carbon Nanofibers: New additive for the Negative Active Material of Lead Acid Batteries. Electrochim. Acta 2017, 257, 109–117. [Google Scholar] [CrossRef]
- Ebner, E.; Burow, D.; Panke, J.; Börger, A.; Feldhoff, A.; Atanassova, P.; Valenciano, J.; Wark, M.; Rühl, E. Carbon blacks for lead-acid batteries in micro-hybrid applications—Studied by transmission electron microscopy and Raman spectroscopy. J. Power Sources 2013, 222, 554–560. [Google Scholar] [CrossRef]
- Tantichanakul, T.; Chailapakul, O.; Tantavichet, N. Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions. J. Power Sources 2011, 196, 8764–8772. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Cao, G.; Zhang, W.; Zhao, H.; Yang, Y. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries. Electrochim. Acta 2015, 186, 654–663. [Google Scholar] [CrossRef]
- Dietz, H.; Radwan, M.; Döring, H.; Wiesener, K. On the hydrogen balance in sealed lead/acid batteries and its effect on battery performance. J. Power Sources 1993, 42, 89–101. [Google Scholar] [CrossRef]
- Bullock, K.R. Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling. J. Power Sources 2010, 195, 4513–4519. [Google Scholar] [CrossRef]
- Calábek, M.; Micka, K.; Křivák, P.; Bača, P. Significance of carbon additive in negative lead-acid battery electrodes. J. Power Sources 2006, 158, 864–867. [Google Scholar] [CrossRef]
- Moseley, P.T.; Rand, D.A.J.; Peters, K. Enhancing the performance of lead–acid batteries with carbon—In pursuit of an understanding. J. Power Sources 2015, 295, 268–274. [Google Scholar] [CrossRef]
- Pavlov, D.; Rogachev, T.; Nikolov, P.; Petkova, G. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries. J. Power Source 2009, 191, 58–75. [Google Scholar] [CrossRef]
Symbol | Negative Plate Additives | BET Surface (m2 g−1) of Additives | Average Particle Size (nm) of Additives |
---|---|---|---|
Control batteries | Acetylene black | 20 | 45.0 |
CB1 batteries | Carbon black 1 | 156 | 38.5 |
CB2 batteries | Carbon black 2 | 234 | 25.6 |
CB3 batteries | Carbon black 3 | 1378 | 4.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.-Y.; Xie, N.; Wang, C.; Wu, F.; Pan, M.; Li, H.-F.; Wu, P.; Wang, X.-D.; Zeng, Z.; Deng, S.; et al. Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives. Appl. Sci. 2019, 9, 186. https://doi.org/10.3390/app9010186
Hu H-Y, Xie N, Wang C, Wu F, Pan M, Li H-F, Wu P, Wang X-D, Zeng Z, Deng S, et al. Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives. Applied Sciences. 2019; 9(1):186. https://doi.org/10.3390/app9010186
Chicago/Turabian StyleHu, Hai-Yan, Ning Xie, Chen Wang, Fan Wu, Ming Pan, Hua-Fei Li, Ping Wu, Xiao-Di Wang, Zheling Zeng, Shuguang Deng, and et al. 2019. "Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives" Applied Sciences 9, no. 1: 186. https://doi.org/10.3390/app9010186
APA StyleHu, H. -Y., Xie, N., Wang, C., Wu, F., Pan, M., Li, H. -F., Wu, P., Wang, X. -D., Zeng, Z., Deng, S., Wu, M. H., Vinodgopal, K., & Dai, G. -P. (2019). Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives. Applied Sciences, 9(1), 186. https://doi.org/10.3390/app9010186