Defense Against Adversarial Attacks in Deep Learning
Abstract
:1. Introduction
2. Noise Reconstruction Algorithm Based on GAN: GNR
2.1. W-GAN
2.2. Network Structure
3. Deep Denoising Network Based on U-Net: UDDN
3.1. U-Net
3.2. Network Structure
4. Defense Mechanism Based on Knowledge Transfer
4.1. Knowledge Distillation
4.2. Training Method Based on Distillation
5. Experimental Results and Analysis
5.1. The Evaluation of UDDN
5.2. The Evaluation of Defending Strategy
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Helmstaedter, M.; Briggman, K.L.; Turaga, S.C.; Jain, V.; Seung, H.S.; Denk, W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.Y.; Alipanahi, B.; Lee, J.L.; Bretschneider, H.; Merico, D.; Yuen, R.K.; Morris, Q. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015, 347, 1254806. [Google Scholar] [CrossRef] [PubMed]
- Ciodaro, T.; Deva, D.; de Seixas, J.; Damazio, D. Online Particle Detection with Neural Networks Based on Topological Calorimetry Information; Journal of physics: conference series; IOP Publishing: Bristol, UK, 2012; Volume 368. [Google Scholar]
- Ackerman, E. How Drive.ai Is Mastering Autonomous Driving with Deep Learning. Available online: https://spectrum. ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning (accessed on 10 March 2017).
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Middlehurst, C. China Unveils World’s First Facial Recognition ATM. 2015. Available online: http://www.telegraph.co.uk/news/worldnews/asia/china/ 11643314/China-unveils-worlds-first-facial-recognition-ATM. html (accessed on 1 June 2017).
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv, 2014; arXiv:1312.6199. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv, 2015; arXiv:1412.6572. [Google Scholar]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 21–24 March 2016. [Google Scholar]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Siniscalchi, S.M.; Salerno, V.M. Adaptation to new microphones using artificial neural networks with trainable activation functions. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1959–1965. [Google Scholar] [CrossRef]
- Salerno, V.M.; Rabbeni, G. An extreme learning machine approach to effective energy disaggregation. Electronics 2018, 7, 235. [Google Scholar] [CrossRef]
- Dziugaite, G.K.; Ghahramani, Z.; Roy, D.M. A study of the effect of JPG compression on adversarial images. arXiv, 2016; arXiv:1608.00853. [Google Scholar]
- Luo, Y.; Boix, X.; Roig, G.; Poggio, T.; Zhao, Q. Foveation-based mechanisms alleviate adversarial examples. arXiv, 2015; arXiv:1511.06292. [Google Scholar]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial Examples for Semantic Segmentation and Object Detection. arXiv, 2017; arXiv:1703.08603. [Google Scholar] [Green Version]
- Ross, A.S.; Doshi-Velez, F. Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients. arXiv, 2017; arXiv:1711.09404. [Google Scholar]
- Zhang, A.; Wang, H.; Li, S.; Cui, Y.; Liu, Z.; Yang, G.; Hu, J. Transfer Learning with Deep Recurrent Neural Networks for Remaining Useful Life Estimation. Appl. Sci. 2018, 8, 2416. [Google Scholar] [CrossRef]
- Nayebi, A.; Ganguli, S. Biologically inspired protection of deep networks from adversarial attacks. arXiv, 2017; arXiv:1703.09202. [Google Scholar]
- Krotov, D.; Hopfield, J.J. Dense Associative Memory is Robust to Adversarial Inputs. arXiv, 2017; arXiv:1701.00939. [Google Scholar] [CrossRef] [PubMed]
- Cisse, M.; Adi, Y.; Neverova, N.; Keshet, J. Houdini: Fooling deep structured prediction models. arXiv, 2017; arXiv:1707.05373. [Google Scholar]
- Gao, J.; Wang, B.; Lin, Z.; Xu, W.; Qi, Y. DeepCloak: Masking Deep Neural Network Models for Robustness Against Adversarial Samples. arXiv, 2017; arXiv:1702.06763. [Google Scholar]
- Akhtar, N.; Liu, J.; Mian, A. Defense against Universal Adversarial Perturbations. arXiv, 2017; arXiv:1711.05929. [Google Scholar]
- Lu, J.; Issaranon, T.; Forsyth, D. SafetyNet: Detecting and Rejecting Adversarial Examples Robustly. arXiv, 2017; arXiv:1704.00103. [Google Scholar] [Green Version]
- Metzen, J.H.; Genewein, T.; Fischer, V.; Bischoff, B. On Detecting Adversarial Perturbations. arXiv, 2017; arXiv:1702.04267. [Google Scholar]
- Li, X.; Li, F. Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P. On the (Statistical) Detection of Adversarial Examples. arXiv, 2017; arXiv:1702.06280. [Google Scholar]
- Liao, F.; Liang, M.; Dong, Y.; Pang, T.; Zhu, J.; Hu, X. Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser. arXiv, 2017; arXiv:1712.02976. [Google Scholar]
- Gu, S.; Rigazio, L. Towards Deep Neural Network Architectures Robust to Adversarial Examples. arXiv, 2015; arXiv:1412.5068. [Google Scholar]
- Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 582–597. [Google Scholar]
Defense | Clean | WhiteTestSet | BlackTestSet |
---|---|---|---|
NA | 0.0000 | 0.0373 | 0.0157 |
DAE | 0.0153 | 0.0359 | 0.0161 |
PGD | 0.0138 | 0.0178 | 0.0145 |
UDDN | 0.0125 | 0.0167 | 0.0134 |
Defense | Clean | WhiteTestSet | BlackTestSet |
---|---|---|---|
NA | 84.5% | 22.3% | 69.0% |
DAE | 66.1% | 28.8% | 62.7% |
PGD | 81.9% | 58.2% | 72.2% |
UDDN | 83.1% | 60.2% | 75.3% |
Defense | Clean | WhiteTestSet | BlackTestSet |
---|---|---|---|
NA | 84.5% | 22.3% | 69.0% |
Data Compression [13] | 82.2% | 53.4% | 55.8% |
PGD [27] | 83.3% | 51.4% | 70.0% |
DCN [28] | 81.9% | 58.2% | 72.2% |
Distillation [29] | 83.6% | 56.3% | 70.8% |
Our method | 83.9% | 61.2% | 76.5% |
Dataset | Clean | WhiteTestSet | BlackTestSet |
---|---|---|---|
NA | 83.9% | 22.3% | 69.0% |
LFW | 83.9% | 61.2% | 76.5% |
YTF | 81.2% | 60.3% | 74.4% |
SFC | 82.7% | 60.9% | 75.6% |
Model | Clean | WhiteTestSet/NA | BlackTestSet/NA |
---|---|---|---|
MobileNet | 81.9% | 60.5%/21.1% | 75.7%/67.0% |
FaceNet | 83.9% | 61.2%/22.3% | 76.5%/69.0% |
GoogleNet | 81.7% | 60.0%/21.0% | 73.9%/66.3% |
VGG 16 | 82.8% | 61.0%/21.8% | 76.3%/67.0% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y. Defense Against Adversarial Attacks in Deep Learning. Appl. Sci. 2019, 9, 76. https://doi.org/10.3390/app9010076
Li Y, Wang Y. Defense Against Adversarial Attacks in Deep Learning. Applied Sciences. 2019; 9(1):76. https://doi.org/10.3390/app9010076
Chicago/Turabian StyleLi, Yuancheng, and Yimeng Wang. 2019. "Defense Against Adversarial Attacks in Deep Learning" Applied Sciences 9, no. 1: 76. https://doi.org/10.3390/app9010076