Dempster–Shafer Fusion Based on a Deep Boltzmann Machine for Blood Pressure Estimation
Abstract
:1. Introduction
- The DS combination is comprised of fused independent estimations of the observations. Moreover, the confidence increases for a given DBM estimate are clearly observed [16] to solve uncertainty to boost the advantage of each DBM classifier and compensate the limitations.
- Our methodology provides upper and lower bounds from the clustered BP measurements using the k-medoids algorithm [18] to reduce the BP estimation uncertainty.
- This approach can mitigate the standard deviation of errors (SDEs) of SBP and DBP by and contrasted to the DBM single estimator [12]. This finding indicates that the DBM-based DS fusion estimator is superior to that of the single DBM estimator in terms of addressing the BP measurement uncertainty.
2. Signal Processing and Feature Selection from Oscillometric Wave Signals
3. DBM-Based DS Fusion
3.1. Artificial Input Data
3.2. Statistical Analysis
3.3. DBM
3.4. DS Fusion
4. Experimental Results and Statistical Analysis
5. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ringrose, J.; Millay, J.; Babwick, S.A.; Neil, M.; Langkaas, L.A.; Padwal, R. Effect of overcuffing on the accuracy of oscillometric blood pressure measurement. J. Am. Soc. Hypertens. 2015, 9, 563–568. [Google Scholar] [CrossRef]
- Benmira, A.M.; Perez-Martin, A.; Coudray, S.; Schuster, I.; Aichoun, I.; Laurent, J.; Bereski-Reguig, F.; Dauzat, M. Systolic peak foot-to-apex time interval, a novel oscillometric technique for systolic blood pressure measurement. J. Hypertens. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Bolic, M.; Groza, V.; Dajani, H.; Rajan, S. Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approaches. IEEE Trans. Instumen. Meas. 2011, 60, 3405–3415. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J.-H.; Nam, S.W.; Lim, C.; Rajan, S.; Dajani, H.; Groza, V. Oscillometric blood pressure estimation based on maximum amplitude algorithm employing Gaussin mixture regression. IEEE Trans. Instrum. Meas. 2013, 62, 3387–3389. [Google Scholar] [CrossRef]
- Lee, S.; Park, C.-H.; Chang, J.-H. Improved Gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure measurement. IEEE Trans. Ind. Inform. 2016, 12, 2269–2280. [Google Scholar] [CrossRef]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Bogdanova, A.M. Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors 2018, 18, 1160. [Google Scholar] [CrossRef]
- Matsumura, K.; Rolfe, P.; Toda, S.; Yamakoshi, T. Cuffless blood pressure estimation using only a smartphone. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Baker, P.D.; Orr, J.A.; Westenskow, D.R.; Egbert, T.P. Method for Determining Blood Pressure Utilizing a Neural Network. U.S. Patent US5339818A, 23 August 1994. [Google Scholar]
- Forouzanfar, M.; Dajani, H.; Groza, V.; Bolic, M.; Rajan, S. Feature-based neural network approach for oscillometric blood pressure estimation. IEEE Trans. Instumen. Meas. 2011, 60, 2786–2796. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J.-H. Oscillometric Blood Pressure Estimation Based on Deep Learning. IEEE Trans. Ind. Informat. 2017, 13, 461–472. [Google Scholar] [CrossRef]
- Hinton, G.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J.-H. Deep Boltzmann Regression with Mimic Features for Oscillometric Blood Pressure Estimation. IEEE Sens. J. 2017, 17, 5982–5993. [Google Scholar] [CrossRef]
- Salakhutdinoy, R.; Hinton, G. An efficient learning procedure for deep Boltzmann machines. Neural Comput. 2012, 24, 1967–2006. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Park, T.-J.; Chang, J.-H. Dempster–Shafer theory for enhanced statistical model-based voice activity detection. Comput. Speech Lang. 2018, 47, 47–58. [Google Scholar] [CrossRef]
- Lee, S.; Rajan, S.; Park, C.H.; Chang, J.-H.; Dajani, H.; Groza, V. Estimated confidence interval from single blood pressure measurement based on algorithm fusion. Comput. Biol. Med. 2015, 62, 154–163. [Google Scholar] [CrossRef]
- Theodoridis, S. Machine Learning; Academic Press: San Jose, CA, USA, 2015. [Google Scholar]
- Association for the Advancement of Medical Instrumentation (AAMI). American National Standard Manual; Electronic or Automated Sphygmonanometers: Arlington, VA, USA, 2003. [Google Scholar]
- Efron, B. Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Statist. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Bengio, Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Rogova, G. Combining the results of several neural network classifiers. Neural Net. 1994, 7, 777–781. [Google Scholar] [CrossRef]
- Bagheri, M.A.; Montazer, G.A.; Kabir, E. A subspace approch to error correcting output codes. Pattern Recognit Lett. 2013, 34, 176–184. [Google Scholar] [CrossRef]
- Knapp-Cordes, M.; McKeeman, B. Improvements to tic and toc functions for measuring absolute elapsed time performance in MATLAB. In Matlab Technical Articles and Newsletters; The MathWorks Inc.: Natick, MA, USA, 2011. [Google Scholar]
- O’Brien, E.; Petrie, J.; Littler, W.; Swiet, M.D.; Padfield, P.L.; Altman, D.G.; Bland, M.; Coate, A.; Atkins, N. The British hypertension society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 1993, 11, 43–62. [Google Scholar]
- Rakotomamonjy, A. Analysis of SVM regression bound for variable ranking. Neurocomputing 2007, 70, 1489–1491. [Google Scholar] [CrossRef]
BP (mmHg) | SBP | DBP | SBP L | SBP U | DBP L | DBP U |
---|---|---|---|---|---|---|
category 1 | 81.6 | 45.5 | 79.3 | 92.4 | 42.9 | 49.1 |
category 2 | 92.8 | 50.5 | 93.0 | 96.4 | 50.2 | 55.7 |
category 3 | 98.9 | 56.6 | 96.5 | 101.0 | 55.8 | 60.2 |
category 4 | 103.7 | 60.3 | 101.1 | 105.1 | 60.2 | 63.4 |
category 5 | 107.9 | 64.1 | 105.2 | 109.6 | 63.5 | 66.7 |
category 6 | 112 | 68.2 | 109.8 | 115.5 | 66.8 | 69.9 |
category 7 | 117.7 | 71.0 | 115.6 | 119.6 | 70.0 | 75.3 |
category 8 | 123.9 | 77.0 | 119.8 | 126.4 | 75.4 | 80.5 |
category 9 | 130.7 | 81.6 | 126.8 | 134.5 | 80.6 | 85.7 |
category 10 | 139.8 | 98.2 | 135.5 | 144.8 | 88.3 | 98.6 |
Accuracy | SVM | SVMDS | DBN | DBNDS | DBM | DBMDS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
test | SBP | DBP | SBP | DBP | SBP | DBP | SBP | DBP | SBP | DBP | SBP | DBP |
test 1 | 0.64 | 0.67 | 0.67 | 0.70 | 0.67 | 0.69 | 0.71 | 0.74 | 0.67 | 0.70 | 0.73 | 0.76 |
test 2 | 0.66 | 0.68 | 0.68 | 0.71 | 0.68 | 0.72 | 0.70 | 0.75 | 0.69 | 0.71 | 0.73 | 0.76 |
test 3 | 0.65 | 0.70 | 0.67 | 0.72 | 0.66 | 0.69 | 0.72 | 0.73 | 0.68 | 0.71 | 0.74 | 0.77 |
test 4 | 0.66 | 0.69 | 0.68 | 0.71 | 0.65 | 0.72 | 0.71 | 0.73 | 0.68 | 0.74 | 0.73 | 0.76 |
test 5 | 0.65 | 0.69 | 0.68 | 0.71 | 0.69 | 0.73 | 0.71 | 0.74 | 0.72 | 0.74 | 0.74 | 0.77 |
avg | 0.65 | 0.69 | 0.68 | 0.71 | 0.67 | 0.71 | 0.71 | 0.74 | 0.69 | 0.72 | 0.73 | 0.76 |
std | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 |
mmHg | MAA | SVM | SVMDS | DBN | DBNDS | DBM | DBMDS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | SBP | DBP | SBP | DBP | SBP | DBP | SBP | SBP | DBP | SBP | DBP | DBP | SBP | DBP |
ME | 0.60 | 1.73 | −0.17 | 0.19 | 0.40 | −0.25 | 0.11 | −0.03 | −0.24 | 0.09 | 0.21 | −0.18 | 0.17 | −0.11 |
SDE | 9.32 | 7.40 | 7.14 | 5.25 | 6.00 | 5.14 | 6.28 | 5.20 | 5.66 | 4.71 | 5.96 | 4.85 | 5.34 | 4.36 |
SBP | DBP | Standard (SBP/DBP) | |||||
---|---|---|---|---|---|---|---|
Tests | Absolute Difference (%) | Absolute Difference (%) | BHS | ||||
≤5 mmHg | ≤10 mmHg | ≤15 mmHg | ≤5 mmHg | ≤10 mmHg | ≤15 mmHg | Grade | |
MAA | 47.86 | 76.90 | 92.38 | 52.38 | 82.86 | 94.05 | C/B |
SVM | 52.29 | 90.71 | 97.14 | 71.43 | 93.57 | 98.10 | B/A |
SVMDS | 56.24 | 90.80 | 97.41 | 72.00 | 94.12 | 98.59 | A/A |
DBN | 62.35 | 88.94 | 97.18 | 72.00 | 94.12 | 98.59 | A/A |
DBNDS | 64.98 | 91.06 | 97.88 | 74.12 | 94.82 | 99.06 | A/A |
DBM | 64.52 | 90.82 | 97.18 | 72.24 | 94.38 | 98.59 | A/A |
DBMDS | 66.12 | 92.47 | 98.82 | 77.20 | 97.19 | 99.81 | A/A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Chang, J.-H. Dempster–Shafer Fusion Based on a Deep Boltzmann Machine for Blood Pressure Estimation. Appl. Sci. 2019, 9, 96. https://doi.org/10.3390/app9010096
Lee S, Chang J-H. Dempster–Shafer Fusion Based on a Deep Boltzmann Machine for Blood Pressure Estimation. Applied Sciences. 2019; 9(1):96. https://doi.org/10.3390/app9010096
Chicago/Turabian StyleLee, Soojeong, and Joon-Hyuk Chang. 2019. "Dempster–Shafer Fusion Based on a Deep Boltzmann Machine for Blood Pressure Estimation" Applied Sciences 9, no. 1: 96. https://doi.org/10.3390/app9010096
APA StyleLee, S., & Chang, J. -H. (2019). Dempster–Shafer Fusion Based on a Deep Boltzmann Machine for Blood Pressure Estimation. Applied Sciences, 9(1), 96. https://doi.org/10.3390/app9010096