Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe
Abstract
:1. Introduction
2. Air Quality Monitoring in Terms of Particulate Matter
2.1. The Need of Measurements and Legal Aspects
- -
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (O.J. UE, L 152/1 of 11.06.2008, p.1);
- -
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (O.J. UE L 23/3 of 26.01.2005, p. 3);
- -
- Commission Implementing Decision of 12 December 2011 laying down rules for Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council as regards the reciprocal exchange of information and reporting on ambient air quality (O.J. UE, L 335/86 of 17.12.2011, p. 86);
- -
- Commission Directive (EU) 2015/1480 of 28 August 2015 amending several annexes to Directive 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality (O.J. UE, L. 226/4 of 29.08.2015, p.4).
2.2. Types of Monitoring Stations
- -
- Traffic stations—pollutants concentrations are influenced mainly by emissions from neighbouring communication routes;
- -
- Industrial stations—pollutants concentrations are influenced predominantly by emissions from a neighbouring single industrial source or industrial area with more sources;
- -
- Background stations—pollutants concentrations are representative of the average exposure of the general population (or vegetation and natural ecosystems) in the area covered by the assessment.
- -
- Urban and suburban background stations;
- -
- Rural stations:
- -
- Near-city background stations;
- -
- Regional stations;
- -
- Remote stations.
2.3. Localization of Monitoring Sites and the Spatial Distribution of PM Concentrations
2.4. Monitoring of PM—European Data
- -
- European Supersites for Atmospheric Aerosol Research (EUSAAR) [83],
- -
- Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS) [84],
- -
- Integrated non-CO2 Greenhouse Gas Observing System (InGOS) [85];
- -
- Chemical On-line Composition and Source Apportionment of Fine Aerosol (COLOSSAL) [86].
3. Materials and Methods
- -
- Sufficient time coverage—only long-term measurements (at least 1 year) were taken into account, with some exceptions regarding to specific season of the year;
- -
- Full chemical characteristics of PM2.5—understand as full information on ionic and carbon composition;
- -
- Seasonal variability of PM2.5 concentrations and chemical compositions—we focused on the scientific works in which the chemical composition of PM2.5 was considered in a seasonal approach (heating and non-heating period, winter and summer season).
- -
- tabular (Table 1 and Table 2), where the data on concentrations of selected major components of PM2.5 are summarized (Section 4.1);
- -
- graphical (Figure 2 and Figure 3), where the shares of secondary inorganic ions (SO42−, NO3− and NH4+) and total carbon (TC = EC + OC) in PM2.5 are shown (Section 4.2).
4. Results and Discussion
4.1. Concentrations of PM2.5 and Its Related Main Chemical Compounds
- -
- Urban background station in Paris (PM2.5 = 14.8 µg·m−3) and station in its suburbs (PM2.5 = 12.6 µg·m−3) (France);
- -
- Urban station in Thessaloniki (PM2.5 = 25.9 µg·m−3 and 37.7 µg·m−3 (Ep)) and rural background stations in Finokalia (PM2.5 = 12.00 µg·m−3) and Penteli (PM2.5 = 23.8 µg·m−3) (Greece),
- -
- Urban background station in Prague (PM2.5 = 29.6 µg·m−3) and regional background station in Košetice (PM2.5 = 22.5 µg·m−3 (Ep)) (the Czech Republic, heating period).
- -
- Poland: SIA concentrations in Szczecin (SIA = 5.42 µg·m−3; Ep) was closer to the value recorded in Złoty Potok (SIA = 4.36 µg·m−3; Ep) than in Trzebinia (SIA = 7.35 µg·m−3; Ep);
- -
- Germany: similar levels of the SIA concentrations from rural background stations located in Waldhof (SIA = 6.06 µg·m−3; Ep) and Neuglobsow (SIA = 5.25 µg·m−3; Ep) and urban background station in Duisburg (SIA = 5.80 µg·m−3);
- -
- The Netherlands: higher SIA concentrations from rural background station in Cabauw-Zijdeweg (SIA = 7.89 µg·m−3; Ep) in comparison with urban background station in Rotterdam (SIA = 4.10 µg·m−3).
4.2. Chemical Composition of PM2.5—Contributions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hinds, W.C. Aerosol Technology. Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; pp. 1–11. ISBN 0-471-19410-7. [Google Scholar]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.-W.A.; Wang, X.; Watson, J.G. Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2016; pp. 325–656. ISBN 978-1-118-94740-1. [Google Scholar]
- Calvo, A.I.; Alves, C.; Castro, A.; Pont, V.; Vicente, A.M.; Fraile, R. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 2013, 120–121, 1–28. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; ISBN 92-890-2192-6. [Google Scholar]
- Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artiñano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2015, 75, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; LeRoy Miller, H. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the IPCC; Cambridge University Press: New York, NY, USA, 2007; ISBN1 978-0521-88009-1. ISBN2 978-0521-70596-7. [Google Scholar]
- Squizzato, S.; Masiol, M.; Innocente, E.; Pecorari, E.; Rampazzo, G.; Pavoni, B. A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. J. Aerosol Sci. 2012, 46, 64–76. [Google Scholar] [CrossRef]
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Sánchez, J.S.; Vidal Romaní, J.R.; Alves, C. Deposition of particles on gypsum-rich coatings of historic buildings in urban and rural environments. Constr. Build. Mater. 2011, 25, 813–822. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe–2018 Report; EEA Report No 12/2018; Publication office of the European Union: Luxembourg, 2018; ISBN 978-92-9213-921-6.
- Fann, N.; Risley, D. The public health context for PM2.5 and ozone air quality trends. Air Qual. Atmos. Health 2013, 6, 1–11. [Google Scholar] [CrossRef]
- Yin, J.; Harrison, R.M. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. Environ. 2008, 42, 980–988. [Google Scholar] [CrossRef]
- Klejnowski, K.; Krasa, K.; Rogula-Kozłowska, W.; Błaszczak, B. Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) Measurements. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Masiol, M.; Squizatto, S.; Ceccato, D.; Pavoni, B. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation. Chemosphere 2015, 119, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K. Concentration, Origin and Health Hazard from Fine Particle-Bound PAH at Three Characteristics Sites in Southern Poland. Bull. Environ. Contam. Toxicol. 2013, 91, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K.; Szopa, S. Hazardous compounds in urban PM in the central part of Upper Silesia (Poland) in winter. Arch. Environ. Prot. 2013, 39, 53–65. [Google Scholar] [CrossRef]
- Transboundary Particulate Matter, Photo-Oxidants, Acidifying and Euthrophying Components. EMEP Status Report 1/2018. 22 August 2018. Available online: http://www.emep.int/publ/common_publications.html (accessed on 23 October 2018).
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Atmos. Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj (accessed on 23 October 2018).
- Shao, J.; Wheeler, A.J.; Chen, L.; Strandberg, B.; Hinwood, A.; Johnston, F.H.; Zosky, G.R. The pro-inflammatory effects of particulate matter on epithelial cells are associated with elemental composition. Chemosphere 2018, 202, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jin, Y.; Carlsten, C. Inflammatory health effects of indoor and outdoor particulate matter. J. Allergy Clin. Immunol. 2018, 141, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Pozzer, A.; Bacer, S.; De Zolt Sappadina, S.; Predicatori, F.; Caleffi, A. Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. Atmos. Pollut. Res. 2018. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Oudinet, J.-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ. 2011, 45, 6557–6566. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First Results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92. [Google Scholar] [CrossRef]
- Błaszczak, B. The Use of Principal Component Analysis for Source Identification of PM2.5 from Selected Urban and Regional Background Sites in Poland. In Proceedings of the E3S Web of Conferences, X-th Scientific Conference Air Protection in Theory and Practice, Zakopane, Poland, 18–21 October 2017. [Google Scholar]
- Caggiano, R.; Macchiato, M.; Trippetta, S. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Sci. Total Environ. 2010, 408, 884–895. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Spindler, G.; Brüggemann, E.; Gnauk, T.; Grüner, A.; Müller, K.; Herrmann, H. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 2010, 44, 164–173. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentrations and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Błaszczak, B.; Rogula-Kozłowska, W.; Mathews, B.; Juda-Rezler, K.; Klejnowski, K.; Rogula-Kopiec, P. Chemical Compositions of PM2.5 at Two Non-Urban Sites from the Polluted Region in Europe. Aerosol Air Qual. Res. 2016, 16, 2333–2348. [Google Scholar] [CrossRef]
- Squizzato, S.; Cazzaro, M.; Innocente, E.; Visin, F.; Hopke, P.K.; Rampazzo, G. Urban air quality in a mid-size city–PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2017, 186, 51–62. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenology–3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, W.; Szidat, S.; Prévôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Sillanpää, M.; Hillamo, R.; Saarikoski, S.; Frey, A.; Pennanen, A.; Makkonen, U.; Spolnik, Z.; Van Grieken, R.; Braniš, M.; Brunekreef, B.; et al. Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmos. Environ. 2006, 40, 212–223. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmos. Environ. 2005, 39, 7114–7126. [Google Scholar] [CrossRef]
- Plaza, J.; Artñano, B.; Salvador, P.; Gómez-Moreno, F.J.; Pujadas, M.; Pio, C.A. Short-term secondary organic carbon estimations with a midified OC/EC primary ratio methos at suburban site in Madrid (Spain). Atmos. Environ. 2011, 45, 2496–2506. [Google Scholar] [CrossRef]
- Khan, M.B.; Masiol, M.; Formenton, G.; Di Gilio, A.; de Gennaro, G.; Agostinelli, C.; Pavoni, B. Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Sci. Total Environ. 2016, 542, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Freney, E.J.; Sellegri, K.; Canonaco, F.; Boulon, J.; Hervo, M.; Weigel, R.; Pichon, J.M.; Colomb, A.; Prévôt, A.S.H.; Laj, P. Seasonal variations in aerosol particle composition at the Puy-de-Dôme research station in France. Atmos. Chem. Phys. 2011, 11, 13047–13059. [Google Scholar] [CrossRef]
- Guerreiro, C. Air Quality in Europe–2013 Report; EEA Report No 9/2013; Publication Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-406-8. [Google Scholar]
- Duvall, R.M.; Majestic, B.J.; Shafer, M.M.; Chuang, P.Y.; Simoneit, B.R.T.; Schauer, J.J. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos. Environ. 2008, 42, 5872–5884. [Google Scholar] [CrossRef]
- Préndez, M.; Wachter, J.; Vega, C.; Flocchini, R.G.; Wakayabashi, P.; Morales, J.R. PM2.5 aerosols collected in the Antarctic Peninsula with a solar powered sampler during austral summer periods. Atmos. Environ. 2009, 43, 5575–5578. [Google Scholar] [CrossRef]
- Galindo, N.; Gil-Moltó, J.; Varea, M.; Chofre, C.; Tubero, E. Seasonal and interannual trends in PM levels and associated inorganic ions in southeastern Spain. Microchem. J. 2013, 110, 81–88. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Sówka, I.; Mathews, B.; Klejnowski, K.; Zwoździak, A.; Kwiecińska, K. Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland. J. Environ. Prot. 2013, 4, 371–379. [Google Scholar] [CrossRef]
- Alastuey, A.; Querol, X.; Rodríguez, S.; Plana, F.; Lopez-Soler, A.; Ruiz, C.; Mantilla, E. Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos. Environ. 2004, 38, 4979–4992. [Google Scholar] [CrossRef]
- Błaszczak, B.; Juda-Rezler, K.; Rogula-Kozłowska, W.; Reizer, M.; Mathews, B.; Maciejewska, K.; Klejnowski, K. Ionic Composition of Fine Particulate Matter from Urban and Regional Background Sites in Poland. Environ. Eng. Sci. 2017, 34, 236–250. [Google Scholar] [CrossRef]
- Minguillón, N.C.; Querol, X.; Baltensperger, U.; Prévôt, A.S.H. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution? Sci. Total Environ. 2012, 427–428, 191–202. [Google Scholar]
- Błaszczak, B.; Reizer, M.; Juda-Rezler, K.; Krajny, E.; Mathews, B.; Klejnowski, K. Analysis of national vs. long-range transport contribution to organic and inorganic aerosol load in selected location in Poland. In Air Pollution Modeling and Its Application XXIV; Steyn, D.G., Chaumerliac, N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 65–70. ISBN 978-3-319-24478-5. [Google Scholar]
- Đordević, D.; Vakmirović, Z.; Tošić, I.; Unkašević, M. Contribution of dust transport and resuspension to particulate matter levels in the Mediterranean atmosphere. Atmos. Environ. 2004, 38, 3637–3645. [Google Scholar] [CrossRef]
- Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651. [Google Scholar] [CrossRef]
- Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Hakola, H.; Keronen, P.; Vakkari, V.; Aalto, P.P. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: Comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. Atmos. Chem. Phys. 2012, 12, 5617–5631. [Google Scholar] [CrossRef]
- Szigeti, T.; Óvári, M.; Dunster, C.; Kelly, F.J.; Lucarelli, F.; Záray, G. Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 2015, 518–519, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, F.; Kfoury, A.; Delmaire, G.; Roussel, G.; Zein, A.E.; Courcot, D. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 2017, 181, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Bressi, M.; Sciare, J.; Ghersi, V.; Bonnaire, N.; Nicolas, J.B.; Petit, J.-E.; Moukhtar, S.; Rosso, A.; Mihalopoulos, N.; Féron, A. A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France). Atmos. Chem. Phys. 2013, 13, 7825–7844. [Google Scholar] [CrossRef]
- Salameh, D.; Detournay, A.; Pey, J.; Pérez, N.; Liguori, F.; Saraga, D.; Bove, M.C.; Brotto, P.; Cassola, F.; Massabò, D.; et al. PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. Atmos. Res. 2015, 155, 102–117. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Tørseth, K.; Aas, W.; Breivik, K.; Fjaeraa, A.M.; Fiebig, M.; Hjellbrekke, A.G.; Lung Myhre, C.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 2012, 12, 5447–5481. [Google Scholar] [CrossRef] [Green Version]
- CAFE Working Group on Particulate Matter: Second Position Paper on Particulate Matter. 20 December 2004. Available online: http://ec.europa.eu/environment/archives/cafe/pdf/working_groups/2nd_position_paper_pm.pdf (accessed on 23 October 2018).
- Larssen, S.; Sluyter, R.; Helmis, C. Criteria for EUROAIRNET, the EEA Air Quality Monitoring and Information Network; Technical Report No. 12; EEA: Copenhagen, Denmark, 2003; ISBN 92-9167-513-X.
- Spangl, W.; Schneider, J.; Moosmann, L.; Nagl, C. Representativeness and Classification of Air Quality Monitoring Stations. Draft Final Report; Umweltbundesamt: Vienna, Austria, 2007; Available online: http://ec.europa.eu/environment/air/quality/legislation/pdf/report_uba.pdf (accessed on 23 October 2018).
- Guidance on Commision Implementing Decision Laying Down Rules for Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council as Regards the Reciprocal Exchange on Information and Reporting on Ambient Air (Decision 2011/850/EU); European Commission Directorate-General for Environment: Brussels, Belgium, 2018; Available online: http://ec.europa.eu/environment/air/quality/data_reporting.htm (accessed on 23 October 2018).
- Bulpitt, S.; Price, M. The composition of PM10 as collected by a conventional TEOM, a modified TEOM and a Partisol gravimetric monitor at a kerbside site in the north east of England. Environ. Monit. Assess. 2006, 121, 479–489. [Google Scholar] [CrossRef] [PubMed]
- The National Standards Authority of Ireland. PN-EN 12341:2014-07: Ambient Air–Standard Gravimetric Measurement Method to Determine the Concentration of Mass Fractions PM10 or PM2.5 Particulate Matter; The National Standards Authority of Ireland (NSAI): Dublin, Ireland, 2014.
- Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods. Report by an EC Working Group on Guidance for the Demonstration of Equivalence. January 2010. Available online: http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf (accessed on 23 October 2018).
- Glavas, S.D.; Nikolakis, P.; Ambatzoglou, D.; Mihalopoulos, N. Factors affecting the seasonal variation of mass and ionic composition of PM2.5 at a central mediterranean coastal site. Atmos. Environ. 2008, 42, 5365–5373. [Google Scholar] [CrossRef]
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water Air Soil Pollut. 2011, 215, 365–372. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.N.; Bougiatioti, A.; Maggos, T.; Vasilakos, C.; Mihalopoulos, N. Assessment of PM2.5 and PM1 chemical profile in a multiple-impacted Mediterranean urban area: Origin, sources and meteorological dependence. Sci. Total Environ. 2014, 479–480, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health 2015, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- VanCuren, T. Spatial Factors Influencing Winter Primary Particle Sampling and Interpretation. J. Air Waste Manag. Assoc. 1999, 45, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Błaszczak, B.; Klejnowski, K. Concentrations of PM2.5, PM2.5-10 and PM-related elements at two heights in an urban background area in Zabrze (Poland). Arch. Environ. Prot. 2011, 37, 31–47. [Google Scholar]
- Sanderson, P.; Delgado Saborit, J.M.; Harrison, R.M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles’. Atmos. Environ. 2014, 94, 353–365. [Google Scholar] [CrossRef]
- Wilson, J.G.; Kingham, S.; Pearce, J.; Sturman, A.P. A Review of Intraurban Variations in Particulate Air Pollution: Implications for Epidemiological Research. Atmos. Environ. 2005, 39, 6444–6462. [Google Scholar] [CrossRef]
- Monn, C. Exposure Assessment of Air Pollutants: A Review on Spatial Heterogeneity and Indoor/Outdoor/Personal Exposure to Suspended Particulate Matter, Nitrogen, Dioxide and Ozone. Atmos. Environ. 2001, 35, 1–32. [Google Scholar] [CrossRef]
- Laj, P.; Klausen, J.; Bilde, M.; Plaß-Duelmer, C.; Pappalardo, G.; Clerbaux, C.; Baltensperger, U.; Hjorth, J.; Simpson, D.; Reimann, S.; et al. Measuring atmospheric composition change. Atmos. Environ. 2009, 43, 5351–5414. [Google Scholar] [CrossRef]
- EBAS Database. Available online: http://ebas.nilu.no (accessed on 25 February 2014).
- AirBase Official Website. Available online: https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7 (accessed on 25 August 2017).
- European Air Quality Portal. Available online: http://eeadmz1-cws-wp-air.azurewebsites.net/ (accessed on 28 August 2018).
- Transboundary Particulate Matter in Europe. EMEP Status Report 4/2011. August 2011. Available online: http://www.emep.int/publ/common_publications.html (accessed on 23 October 2018).
- The European Exchange of Information in 2011. ETC/ACM Technical Paper 2012/1. May 2012. Available online: https://acm.eionet.europa.eu/reports/docs/ETCACM_TP_2012_1_eoi2011_2010aqdata.pdf (accessed on 23 October 2018).
- Braniš, M.; Domasová, M.; Řezáčová, P. Particulate air pollution in a small settlement: The effect of local heating. Appl. Geochem. 2007, 22, 1255–1264. [Google Scholar] [CrossRef]
- Samek, L.; Zwoździak, A.; Sówka, I. Chemical characterization and source identification of particulate matter PM10 in a rural and urban site in Poland. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar]
- European Supersites for Atmospheric Aerosol Research (EUSAAR). Available online: www.eusaar.net/ (accessed on 28 August 2018).
- Aerosols, Clouds, and Trace Gases Research InfraStructure Network (ACTRIS). Available online: https://www.actris.eu/default.aspx (accessed on 28 August 2018).
- Integrated Non-CO2 Greenhouse Gas Observing System (InGOS). Available online: http://www.ingos-infrastructure.eu/ (accessed on 28 August 2018).
- Chemical On-Line Composition and Source Apportionment of Fine Aerosol (COLOSSAL). Available online: https://www.costcolossal.eu (accessed on 25 February 2014).
- Chief Inspectorate of Environmental Protection. Air Quality Portal. Available online: http://powietrze.gios.gov.pl/pjp/current?lang=en (accessed on 28 August 2018).
- PRISMA Guidelines. Available online: www.prisma-statement.org/ (accessed on 10 September 2018).
- Schwarz, J.; Cusack, M.; Karban, J.; Chalupníčková, E.; Havránek, V.; Smolík, J.; Ždímal, V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016, 176–177, 108–120. [Google Scholar] [CrossRef]
- Temesi, D.; Molnár, A.; Mészáros, E.; Feczkó, T.; Gelencsér, A.; Kiss, G.; Krivácsy, Z. Size resolved chemical mass balance of aerosol particles over rural Hungary. Atmos. Environ. 2001, 35, 4347–4355. [Google Scholar] [CrossRef]
- Koulouri, E.; Saarikoski, S.; Theodosi, C.; Markaki, Z.; Gerasopoulos, E.; Kouvarakis, G.; Mäkelä, T.; Hillamo, R.; Mihalopoulos, N. Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean. Atmos. Environ. 2008, 42, 6542–6550. [Google Scholar] [CrossRef]
- Moroni, B.; Castellini, S.; Crocchianti, S.; Piazzalunga, A.; Fermo, P.; Scardazza, F.; Cappelletti, D. Ground-based measurements of long-range transported aerosol at the rural regional background site of Monte Martano (Central Italy). Atmos. Res. 2015, 155, 26–36. [Google Scholar] [CrossRef]
- Milford, C.; Castell, N.; Marrero, C.; Rodríguez, S.; Sánchez de la Campa, A.M.; Fernández-Camacho, R.; de la Rosa, J.; Stein, A.F. Measurements and simulation of speciated PM2.5 in south-west Europe. Atmos. Environ. 2013, 77, 36–50. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Mathews, B.; Szopa, S. A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland. Bull. Environ. Contam. Toxicol. 2012, 88, 722–729. [Google Scholar] [CrossRef]
- Laongsri, B.; Harrison, R.M. Atmospheric behaviour of particulate oxalate at UK urban background and rural sites. Atmos. Environ. 2013, 71, 319–326. [Google Scholar] [CrossRef]
- Ravindra, K.; Stranger, M.; Van Grieken, R. Chemical characterization and multivariate analysis of atmospheric PM2,5 particles. J. Atmos. Chem. 2008, 59, 199–218. [Google Scholar] [CrossRef]
- Keuken, M.; van der Gon, H.D.; van der Valk, K. Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Sci. Total Environ. 2012, 408, 4591–4599. [Google Scholar] [CrossRef]
- Kfoury, A.; Ledoux, F.; Roche, C.; Delmaire, G.; Roussel, G.; Courcot, D. PM2.5 source spportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. J. Environ. Sci. 2016, 40, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Tolis, E.I.; Saraga, D.E.; Lytra, M.K.; Papathanasiou, A.C.; Bougaidis, P.N.; Prekas-Patronakis, O.E.; Ioannidis, I.I.; Bartzis, J.G. Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area. Atmos. Environ. 2015, 113, 197–207. [Google Scholar] [CrossRef]
- Achilleos, S.; Wolfson, J.M.; Ferguson, S.T.; Kang, C.-M.; Hadjimitsis, D.G.; Hadjicharakambous, M.; Achilleos, C.; Christodoulou, A.; Nisantzi, A.; Papoutsa, C.; et al. Spatial variability of fine and coarse particle composition and sources in Cyprus. Atmos. Res. 2016, 169, 255–270. [Google Scholar] [CrossRef]
- Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and soruce apportionment. Atmos. Res. 2016, 174–175, 106–119. [Google Scholar] [CrossRef]
- Masiol, M.; Benetello, F.; Harrison, R.M.; Formenton, G.; De Gaspari, F.; Pavoni, B. Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy). Atmos. Environ. 2015, 117, 19–31. [Google Scholar] [CrossRef]
- Mirante, F.; Salvador, P.; Pio, C.; Alves, C.; Artiñano, B.; Caseiro, A.; Revuelta, M.A. Size fractionated aerosol composition at roadside and background environments in the Madrid urban atmosphere. Atmos. Res. 2014, 138, 278–292. [Google Scholar] [CrossRef]
- Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A.M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 2012, 61, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Aldabe, J.; Elustondo, D.; Santamaría, C.; Lasheras, E.; Pandolfi, M.; Alastuey, A.; Querol, X.; Santamaría, J.M. Chemical characterization and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 2011, 102, 191–205. [Google Scholar] [CrossRef]
- Szigeti, T.; Mihucz, V.G.; Óvári, M.; Baysal, A.; Atilgan, S.; Akman, S.; Záray, G. Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem. J. 2013, 107, 86–94. [Google Scholar] [CrossRef]
- Koçak, M.; Mihalopoulos, N.; Kubilay, N. Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos. Environ. 2007, 41, 7351–7368. [Google Scholar] [CrossRef]
Location | Period | Concentration [µg·m−3] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | SO42− | NO3− | NH4+ | Cl− | K+ | Na+ | Mg2+ | Ca2+ | EC | OC | ||
Złoty Potok (PL), A [32,47] | Jan–Mar, Apr–Jul 2013 | 25.16 | 2.31 | 1.36 | 0.69 | 0.12 | 0.07 | 0.24 | 0.03 | 0.04 | 1.48 | 8.59 |
Jan–Mar 2013 | 34.02 | 2.80 | 2.04 | 1.08 | 0.20 | 0.10 | 0.26 | 0.03 | 0.05 | 2.17 | 12.69 | |
Apr–Jul 2013 | 16.29 | 1.81 | 0.68 | 0.30 | 0.03 | 0.03 | 0.21 | 0.03 | 0.03 | 0.79 | 4.49 | |
Racibórz (PL), C [32] | 2011, 2012 | 31.56 | 3.64 | 3.06 | 1.66 | 1.35 | 0.12 | 0.28 | 0.03 | 0.04 | 1.96 | 12.08 |
H-2011, 2012 | 55.36 | 5.36 | 5.50 | 3.31 | 3.01 | 0.25 | 0.49 | 0.03 | 0.05 | 3.59 | 22.54 | |
NH-2011, 2012 | 14.76 | 2.43 | 1.34 | 0.50 | 0.18 | 0.02 | 0.12 | 0.03 | 0.04 | 0.80 | 4.70 | |
Puszcza Borecka (PL), B [77] | 2011 | 12.79 | 2.11 | 1.43 | 0.78 | 0.14 | 0.11 | 0.30 | 0.02 | 0.08 | 0.58 | 3.42 |
H-2011 | 16.49 | 2.69 | 2.89 | 1.16 | 0.15 | 0.18 | 0.56 | 0.02 | 0.08 | 0.84 | 4.41 | |
NH-2011 | 9.79 | 1.69 | 0.37 | 0.50 | 0.04 | 0.06 | 0.10 | 0.02 | 0.08 | 0.36 | 2.62 | |
Zielonka (PL), A [77] | 2011 | 16.07 | 1.78 | 1.46 | 1.08 | 0.14 | 0.10 | 0.12 | 0.01 | 0.10 | 0.88 | 4.25 |
H-2011 | 20.49 | 2.15 | 2.47 | 1.66 | 0.23 | 0.15 | 0.13 | 0.01 | 0.08 | 1.25 | 5.59 | |
NH-2011 | 11.97 | 1.44 | 0.54 | 0.54 | 0.05 | 0.06 | 0.11 | 0.01 | 0.12 | 0.53 | 3.02 | |
Košetice (CZ), B [89] | Feb 2009–Apr 2010 | 15.7 | 2.85 | 2.20 | 1.52 | 0.04 | 0.09 | 0.04 | <0.01 | - | 0.61 | 4.07 |
winter: Feb 2009–Apr 2010 | 22.50 | 3.86 | 2.83 | 1.92 | 0.05 | 0.15 | 0.04 | <0.01 | - | 0.80 | 6.00 | |
summer: Feb 2009–Apr 2010 | 9.70 | 2.30 | 0.55 | 0.96 | 0.01 | 0.03 | 0.03 | <0.01 | - | 0.36 | 2.12 | |
Rucava (LV), B [76] | 2009 | 16.74 | 0.76 | 0.41 | - | 0.25 | 0.10 | 0.50 | 0.03 | 0.26 | - | - |
H-2009 | 19.18 | 0.92 | 0.50 | - | 0.25 | 0.12 | 0.79 | 0.02 | 0.09 | - | - | |
NH-2009 | 13.66 | 0.57 | 0.32 | - | 0.24 | 0.07 | 0.18 | 0.04 | 0.46 | - | - | |
Üto (FI), B [76] | 2011 | 6.55 | 0.33 | 0.28 | 0.24 | 0.05 | 0.23 | 0.28 | 0.22 | 0.02 | - | - |
H-2011 | 6.58 | 0.37 | 0.12 | 0.29 | 0.05 | 0.05 | 0.35 | 0.04 | 0.02 | - | - | |
NH-2011 | 6.53 | 0.30 | 0.44 | 0.19 | 0.06 | 0.41 | 0.20 | 0.41 | 0.02 | - | - | |
Harwell (UK), A [77] | 2012 | 12.84 | 0.59 | 0.49 | 1.09 | 0.53 | 0.05 | 1.24 | 0.14 | 0.57 | - | - |
H-2012 | 13.90 | 0.67 | 0.62 | 1.37 | 0.58 | 0.08 | 1.70 | 0.14 | 0.45 | - | - | |
NH-2012 | 11.74 | 0.50 | 0.33 | 0.76 | 0.47 | 0.02 | 0.71 | 0.13 | 0.71 | - | - | |
Risø (DK), B [77] | 2011 | 15.06 | 2.00 | 2.90 | 1.53 | 0.34 | 0.10 | 0.29 | 0.03 | 0.04 | - | - |
H-2011 | 17.44 | 2.32 | 3.35 | 1.78 | 0.45 | 0.14 | 0.35 | 0.04 | 0.05 | - | - | |
NH-2011 | 12.35 | 1.63 | 2.39 | 1.21 | 0.20 | 0.05 | 0.22 | 0.02 | 0.04 | - | - | |
Waldhof (DE), A [77] | 2012 | 11.45 | 1.98 | 2.70 | 1.38 | 0.17 | 0.10 | 0.17 | 0.02 | 0.03 | 0.30 | 2.41 |
H-2012 | 14.13 | 2.22 | 4.59 | 1.95 | 0.29 | 0.13 | 0.22 | 0.02 | 0.03 | 0.41 | 2.59 | |
NH-2012 | 8.79 | 1.74 | 0.90 | 0.84 | 0.06 | 0.06 | 0.12 | 0.01 | 0.04 | 0.20 | 2.24 | |
Neuglobsow (DE), B [77] | 2012 | 10.31 | 1.95 | 2.06 | 1.24 | 0.13 | 0.09 | 0.17 | 0.02 | 0.03 | 0.32 | 2.52 |
H-2012 | 13.14 | 2.11 | 3.59 | 1.71 | 0.21 | 0.12 | 0.22 | 0.02 | 0.03 | 0.45 | 3.02 | |
NH-2012 | 7.47 | 1.79 | 0.53 | 0.76 | 0.06 | 0.05 | 0.12 | 0.01 | 0.04 | 0.20 | 2.05 | |
Schauinsland (DE), BD [77] | 2012 | 6.40 | 0.91 | 0.86 | 0.60 | 0.02 | 0.04 | 0.05 | 0.01 | 0.03 | 0.14 | 1.47 |
H-2012 | 6.58 | 0.72 | 1.19 | 0.62 | 0.02 | 0.04 | 0.04 | <0.01 | 0.02 | 0.16 | 1.28 | |
NH-2012 | 6.22 | 1.09 | 0.54 | 0.59 | 0.02 | 0.04 | 0.05 | 0.01 | 0.03 | 0.12 | 1.66 | |
Melpitz (DE), B [30] | winter: 2004–2008 (a) | 16.00 | 2.30 | 3.80 | 1.90 | 0.24 | 0.14 | 0.16 | 0.03 | 0.07 | 1.50 | 1.50 |
summer: 2004–2008 (a) | 12.50 | 2.00 | 1.00 | 1.20 | 0.05 | 0.08 | 0.11 | 0.02 | 0.08 | 1.10 | 1.20 | |
winter: 2004–2008 (b) | 29.80 | 5.80 | 4.70 | 3.60 | 0.18 | 0.25 | 0.12 | 0.02 | 0.10 | 3.60 | 3.90 | |
summer: 2004–2008 (b) | 22.00 | 3.50 | 1.60 | 2.20 | 0.06 | 0.18 | 0.06 | 0.02 | 0.10 | 2.40 | 2.80 | |
Cabauw-Zijdeweg (NL), A [77] | 2011 | 15.25 | 2.27 | 3.93 | 1.69 | 0.20 | 0.10 | 0.25 | 0.04 | 0.06 | 0.56 | 2.30 |
H-2011 | 18.56 | 2.59 | 4.91 | 2.07 | 0.31 | 0.14 | 0.26 | 0.04 | 0.06 | 0.72 | 2.83 | |
NH-2011 | 11.97 | 1.92 | 2.88 | 1.28 | 0.08 | 0.07 | 0.25 | 0.04 | 0.06 | 0.39 | 1.75 | |
Paris [FR], A [55] | Sep 2009–Sep 2010 | 12.60 | 1.90 | 2.20 | 1.20 | 0.16 | 0.12 | 0.14 | 0.02 | 0.05 | 050 | 2.90 |
Puy-de-Dôme (FR), BD [40] | Feb-Mar 2009 (c) | 10.00 | 1.28 | 1.71 | 1.08 | 0.07 | - | - | - | - | 0.20 (d) | 1.24 (e) |
Jun 2010 (c) | 27.00 | 5.45 | 2.33 | 3.69 | 0.06 | - | - | - | - | 0.47 (d) | 15.59 (e) | |
Chaumont (CH), AD [51] | Apr 1998–Mar 1999 | 7.70 | 2.30 | 0.60 | 0.80 | 0.05 | 0.05 | 0.07 | 0.01 | 0.07 | 0.40 | 1.14 |
K-Puszta (HU), A [90] | Summer 1999 (f) | 23.32 | 2.66 | 0.10 | 0.17 | - | 0.24 | - | - | - | 5.09 | |
Iskrba (SI), B [76] | 2010 | 11.61 | 0.88 | 0.08 | 0.82 | 0.04 | 0.12 | 0.04 | 0.02 | 0.07 | 0.38 | 3.38 |
H-2010 | 13.22 | 0.91 | 0.12 | 0.85 | 0.05 | 0.17 | 0.05 | 0.02 | 0.06 | 0.53 | 3.77 | |
NH-2010 | 10.07 | 0.85 | 0.04 | 0.79 | 0.03 | 0.08 | 0.04 | 0.02 | 0.08 | 0.23 | 2.99 | |
Finokalia (GR), BE [91] | Jul 2004–Jul 2006 (g) | 12.00 | 4.40 | 0.10 | 1.45 | 0.08 | 0.12 | 0.05 | 0.01 | 0.07 | 0.27 | 1.42 |
Penteli (GR), BE [68] | Mar–Aug 2008 | 23.80 | 4.62 | 1.11 | 1.25 | 1.53 | - | 0.52 | 0.19 | 2.03 | 0.48 | 4.10 |
Ayia Marina (CY), BE [77] | 2011 | 16.22 | 3.25 | 0.14 | 0.89 | 0.06 | 0.11 | 0.12 | 0.02 | 0.25 | 0.22 | 1.68 |
H-2011 | 13.11 | 2.35 | 0.12 | 0.69 | 0.06 | 0.09 | 0.07 | 0.01 | 0.19 | 0.22 | 1.36 | |
NH-2011 | 19.14 | 4.21 | 0.17 | 1.10 | 0.07 | 0.14 | 0.18 | 0.02 | 0.30 | 0.23 | 2.02 | |
Ispra (IT), B [77] | 2010 | 17.92 | 0.75 | 0.83 | 1.39 | 0.55 | 0.33 | 0.11 | 0.02 | 0.06 | 1.27 | 5.88 |
H-2010 | 26.56 | 0.71 | 1.41 | 1.96 | 0.32 | 0.59 | 0.10 | 0.02 | 0.01 | 1.91 | 9.03 | |
NH-2010 | 9.02 | 0.78 | 0.17 | 0.84 | 0.79 | 0.07 | 0.11 | 0.03 | 0.10 | 0.65 | 2.71 | |
Monte Martano (IT), A [92] | 2009 | 10.90 | 1.90 | 0.84 | 0.54 | 0.07 | 0.06 | 0.02 | 0.06 | 0.25 | 0.18 | 2.30 |
Valverde del Camino (ES), A [93] | Sep 2008–Aug 2009 | 21.56 | 2.50 | 0.70 | 0.73 | - | - | - | - | - | 0.37 | 4.67 |
Seville (ES), AD [93] | Sep 2008–Aug 2009 | 19.98 | 2.87 | 0.68 | 0.70 | - | - | - | - | - | 0.36 | 4.14 |
Montseny (ES), B [76] | 2007 | 11.96 | 0.88 | 0.25 | 0.75 | 0.08 | 0.10 | 0.03 | 0.03 | 0.09 | 0.17 | 1.74 |
H-2007 | 10.82 | 0.76 | 0.52 | 0.68 | 0.13 | 0.09 | 0.09 | 0.02 | 0.07 | 0.18 | 1.64 | |
NH-2007 | 13.41 | 1.18 | 0.06 | 0.83 | 0.03 | 0.10 | 0.19 | 0.05 | 0.13 | 0.17 | 1.82 |
Location | Period | Concentration [µg·m−3] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | SO42− | NO3− | NH4+ | Cl− | K+ | Na+ | Mg2+ | Ca2+ | EC | OC | ||
Szczecin (PL), A [32,47] | Jan—Mar, May—Jul 2013 | 17.11 | 2.19 | 2.01 | 1.22 | 0.22 | 0.12 | 0.6 | 0.04 | 0.13 | 1.21 | 5.8 |
Jan—Mar 2013 | 24.36 | 2.73 | 3.13 | 1.88 | 0.34 | 0.21 | 0.63 | 0.05 | 0.16 | 1.67 | 8.48 | |
May—Jul 2013 | 8.66 | 1.57 | 0.69 | 0.46 | 0.08 | 0.02 | 0.56 | 0.02 | 0.09 | 0.68 | 2.66 | |
Trzebinia (PL), A [32,47] | Feb—Mar, May—Jul 2013 | 25.21 | 3.96 | 1.68 | 1.71 | 0.47 | 0.16 | 0.51 | 0.04 | 0.13 | 2.21 | 8.6 |
Feb—Mar 2013 | 39.16 | 4.7 | 3.19 | 2.94 | 1.06 | 0.29 | 0.6 | 0.07 | 0.18 | 3.97 | 15.39 | |
May—Jul 2013 | 16.74 | 3.5 | 0.77 | 0.96 | 0.11 | 0.08 | 0.46 | 0.02 | 0.1 | 1.15 | 4.48 | |
Katowice (PL), A [31] | H-2010 | 63.04 | 5.38 | 4.06 | 3.27 | 2.63 | 0.27 | 0.92 | 0.06 | 0.27 | 13.57 | 7.91 |
NH-2010 | 22.73 | 3.78 | 1.13 | 1.59 | 0.81 | 0.2 | 1.46 | 0.12 | 0.45 | 4.47 | 3.32 | |
Zabrze (PL), A [45] | Aug—Dec 2008 | 33.35 | 1.71 | 0.88 | 0.96 | 0.68 | 0.18 | 0.22 | 0.05 | 0.21 | - | - |
Zabrze (PL), A [94] | Jan—Mar 2009 | 66.85 | 5.51 | 3.12 | 2.01 | 1.53 | 0.4 | 0.45 | 0.14 | 0.47 | 19.34 | 9.9 |
Jul—Nov 2009 | 18.44 | 3.23 | 0.51 | 0.53 | 0.04 | 0.14 | 0.24 | - | - | 4.12 | 4.21 | |
Gdańsk (PL), A [31] | H-2010 | 33.02 | 3.08 | 4.28 | 2.13 | 1.02 | 0.23 | 1.51 | 0.08 | 0.21 | 4.43 | 4.22 |
NH-2010 | 14.57 | 1.7 | 0.79 | 0.65 | 0.21 | 0.07 | 0.65 | 0.05 | 0.16 | 1.23 | 0.97 | |
Prague (CZ), A [36] | Nov 2002—Jan 2003 | 29.6 | 5.92 (a) | 2.22 | 2.1 | - | - | - | - | - | 1.69 | 11.42 |
Helsinki (FI), A [52] | Nov 2009—Feb 2010 | - | 3.18 | 2.27 | 0.74 | 0.1 | 0.04 | 0.05 | 0.04 | 0.26 | - | - |
Mar—May 2010 | - | 1.64 | 1.4 | 0.46 | 0.04 | 0.01 | 0.04 | 0.05 | 0.18 | - | - | |
Birmingham (UK), A [95] | Nov 2008—Apr 2011 | - | 1.6 | 1.61 | - | 0.35 | - | - | - | - | 1 | 2.3 |
Duisburg (DE), A [36] | Oct—Nov 2002 | 14.7 | 2.79 (a) | 1.91 | 1.1 | - | - | - | - | - | 1.32 | 3.26 |
Menen (BE), B [96] | winter 2003 | 17 | 4.99 | 5.28 | 1.88 | 0.89 | 0.25 | - | 0.03 | 0.07 | - | - |
summer 2003 | 3.23 | 4.17 | 1.92 | 0.25 | 0.13 | - | 0.02 | 0.06 | - | - | ||
Rotterdam (NL), A [97] | Sep 2007—Oct 2008 | 17.5 | 4.1 | - | - | - | - | - | 2.1 | 3.3 | ||
Marseille (FR), A [56] | Apr 2011—Jul 2012 | 19.6 | 2.2 (a) | 1.7 | 1.5 | - | 0.08 | 0.1 | - | - | 1.8 | 6.2 |
Saint-Omer (FR), C [54] | Mar—Apr 2011 | 32.5 | 2.83 | 9.07 | 4.47 | 0.51 | - | - | - | - | 5.21 | |
Dunkerque (FR), E [98] | Nov—Dec 2010 | 24.9 | 2.52 | 5.71 | 1.91 | 0.58 | - | - | - | - | 6.2 | |
Mar—Apr 2011 | 33.2 | 2.85 | 11.06 | 2.31 | 0.54 | - | - | - | - | 4.73 | ||
Paris (FR), A [55] | Sep 2009—Sep 2010 | 14.8 | 2 | 2.9 | 1.4 | 0.19 | 0.12 | 0.18 | 0.03 | 0.12 | 1.4 | 3 |
Basel (CH), B [51] | Apr 1998—Mar 1999 | 18.9 | 4.1 | 3.1 | 2 | 0.15 | 0.22 | 0.11 | 0.01 | 0.07 | 1.6 | 3.21 |
Bern (CH), C [51] | Apr 1998—Mar 1999 | 24.6 | 2.8 | 3 | 1.6 | 0.1 | 0.18 | 0.09 | 0.01 | 0.13 | 4.2 | 5.36 |
Zurich-Kaserne (CH), C [51] | Apr 1998—Mar 1999 | 20 | 3.5 | 3.5 | 2.1 | 0.07 | 0.18 | 0.08 | 0.01 | 0.07 | 1.8 | 3.36 |
Budapest (HU), C [53] | Jun 2010—Mar 2013 | 21 | 2.84 | 2.14 | 1.33 | 0.11 | 0.18 | 0.22 | 0.05 | 0.16 | 2.02 | 5.42 |
winter: Jun 2010—Mar 2013 | 28.7 | 2.54 | 3.9 | 1.8 | 0.2 | 0.3 | 0.3 | 0.04 | 0.12 | 2 | 8.23 | |
summer: Jun 2010—Mar 2013 | 14 | 3 | 0.26 | 0.9 | 0.03 | 0.09 | 0.13 | 0.04 | 0.1 | 1.88 | 2.87 | |
Athens (GR), A [29] | 2011—2012 | 18 | 3.70 | 1.08 | 1.27 | 0.1 | 0.22 | 0.29 | 0.05 | 0.37 | 0.92 | 5.98 |
Thessaloniki (GR), A [29] | 2011—2012 | 25.9 | 4.5 | 1.89 | 3.2 | 0.14 | 0.12 | 0.09 | 0.02 | 0.18 | 0.69 | 5.89 |
Thessaloniki (GR), C [99] | Apr 2011—May 2012 | 37.7 | 3.96 | 2.4 | 3.8 | 0.39 | 0.14 | 0.29 | 0.07 | 1.43 | 1.29 | 6.62 |
H: Apr 2011—May 2012 | 41.9 | 3.96 | 3.07 | 4.85 | 0.37 | 0.12 | 0.14 | 0.05 | 1.6 | 1.5 | 8.84 | |
NH: Apr 2011—May 2012 | 32.9 | 3.96 | 1.61 | 2.58 | 0.4 | 0.16 | 0.47 | 0.09 | 1.25 | 1.05 | 4.06 | |
Limassol (CY), C [100] | Jan 2012—Jan 2013 (b) | 13.1 | 4.5 | 1.1 | - | - | - | - | - | - | 0.7 | 1.8 |
Lecce (IT), A [101] | Mar 2013—Jun 2013 | 14.4 | 2.76 | 0.34 | 0.71 | 0.17 | 0.18 | 0.34 | 0.03 | 0.2 | 0.52 | 2.97 |
Bologna (IT), A [7] | 2011-2013 | 27.6 | 2.4 | 5.1 | - | - | - | - | - | - | 1.6 | 5.1 |
Conegliano (IT), D [102] | Apr 2012—Mar 2013 | 20 | 1.7 | 2.4 | 1.1 | 0.12 | 0.29 | 0.31 | - | 0.15 | - | - |
Vicenza (IT), D [102] | Apr 2012—Mar 2013 | 28 | 2.4 | 5 | 2.3 | 0.19 | 0.31 | 0.15 | - | 0.15 | - | - |
Padua (IT), D [102] | Apr 2012—Mar 2013 | 29 | 2.4 | 4.6 | 2 | 0.19 | 0.39 | 0.47 | - | 0.16 | - | - |
Rovigo (IT), D [102] | Apr 2012—Mar 2013 | 27 | 2.6 | 5.2 | 2.3 | 0.24 | 0.3 | 0.23 | - | 0.15 | - | - |
Genoa (IT), A [56] | Mar—Sep 2011 | 14 | 3.6 (a) | 0.5 | 1.4 | - | 0.06 | 0.1 | - | - | 1.4 | 2.7 |
Venice (IT), A [56] | Jan—Dec 2011 | 30 | 3.4 (a) | 5.4 | 2.3 | - | 0.4 | 0.2 | - | - | 5.8 | |
Barcelona (ES), A [56] | Feb—Dec 2011 | 18.6 | 2.8 (a) | 1 | 1 | - | - | 0.3 | - | - | 1.2 | 3 |
Madrid (ES), A [103] | Jan—Feb 2011 | 13.8 | 0.61 | 1.16 | 0.48 | 0.15 | 0.05 | 0.17 | 0.01 | 0.1 | 1.53 | 1.2 |
Jun 2009 | 16.6 | 1.02 | 0.69 | 0.27 | 0.16 | 0.05 | 0.2 | 0.03 | 0.21 | 0.94 | 2.71 | |
Huelva (ES), A [104] | Apr 2008—Dec 2009 | 19.3 | 2.8 | 1 | 0.8 | 0.2 | - | 0.5 | - | - | 0.6 (c) | 3.22 |
Pamplona (ES), C [105] | 2009 | 15 | 2.07 | 1.63 | 1.24 | 0.08 | - | - | - | - | 4.04 | |
Elche (ES), A [44] | Oct 2008—Oct 2009 | 13.6 | 2.76 | 1.22 | 0.85 | 0.19 | 0.24 | 0.43 | 0.04 | 0.42 | - | - |
Valencia (ES), C [35] | 2004, 2005 | 24 | 3.8 | 2.7 | 1.8 | 0.8 | - | - | - | - | 7.2 | |
L`Eliana (ES), B [35] | 2004, 2005 | 22 | 2.6 | 1.6 | 1.2 | 0.4 | - | - | - | - | 5 | |
Istanbul (TR), C [106] | Jun 2010—May 2011 | 40 | 4.27 | 1.72 | 1.24 | 0.34 | - | - | - | - | 12.66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczak, B.; Widziewicz-Rzońca, K.; Zioła, N.; Klejnowski, K.; Juda-Rezler, K. Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe. Appl. Sci. 2019, 9, 98. https://doi.org/10.3390/app9010098
Błaszczak B, Widziewicz-Rzońca K, Zioła N, Klejnowski K, Juda-Rezler K. Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe. Applied Sciences. 2019; 9(1):98. https://doi.org/10.3390/app9010098
Chicago/Turabian StyleBłaszczak, Barbara, Kamila Widziewicz-Rzońca, Natalia Zioła, Krzysztof Klejnowski, and Katarzyna Juda-Rezler. 2019. "Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe" Applied Sciences 9, no. 1: 98. https://doi.org/10.3390/app9010098
APA StyleBłaszczak, B., Widziewicz-Rzońca, K., Zioła, N., Klejnowski, K., & Juda-Rezler, K. (2019). Chemical Characteristics of Fine Particulate Matter in Poland in Relation with Data from Selected Rural and Urban Background Stations in Europe. Applied Sciences, 9(1), 98. https://doi.org/10.3390/app9010098