Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns
Abstract
:Featured Application
Abstract
1. Introduction
2. Experiment Program
2.1. Specimen Design
2.2. Preparation of Concrete
2.3. Loading and Testing
3. The Test Results
3.1. Carrying Capacity Analysis
3.2. Failure Mode and Load–Displacement Curve
3.3. Load–Strain Relationship
4. Study on Ultimate Bearing Capacity
4.1. Relationship between Test Value of Bearing Capacity and Nominal Bearing Capacity
4.2. Comparison between Test Values and Calculated Values in Specifications of Bearing Capacity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.Z. Research on Preparation High Titanium Slag Self-Compacting Concrete. Master’s Thesis, Xihua University, Chengdu, China, 2016. [Google Scholar]
- Zhong, S. Performance Experimental and Application Study on High-titanium Blast Furnace Slag No-sand Concrete. Master’s Thesis, Xihua University, Chengdu, China, 2017. [Google Scholar]
- Zhou, C.L. Experimental study on seismic behavior of blast furnace slag concrete shear wall. Chin. Concr. Cem. Prod. 2014, 4, 58–61. [Google Scholar]
- Sun, J.K.; Liu, J.; Zhang, Q.; Li, B. Research on Long-term Deformability and Durability of Complex High Titanium Heavy Slag Concrete. Build. Sci. 2015, 31, 216–219. [Google Scholar]
- Qian, B.; Hu, J.C.; Qi, M.Q.; Zheng, F.P.; Zhao, J. Experimental Research on Performance of C30 Concrete with Aggregate of High Titanium Heavy Slag in Xichang City. Bull. Chin. Ceram. Soc. 2018, 37, 2062–2066. [Google Scholar]
- Jiang, H.M.; Mu, T.M.; Ding, Q.J. Research on the working performance of high titanium heavy slag concrete. Concrete 2011, 42, 125–127. [Google Scholar]
- Zhou, C.L. Experimental Study on High-titanium Blast Furnace Slag Heat-resistant Concrete. Bull. Chin. Ceram. Soc. 2018, 37, 3119–3123. [Google Scholar]
- Huang, H.; Zeng, R.G.; Zhang, A.G.; Mou, T.M. Experimental study on eccentric compressive behaviors of reinforced concrete columns with high titanium heavy slag aggregate. Railw. Eng. 2015, 42, 162–166. [Google Scholar]
- Sun, J.K.; Chen, W.; Wang, J.; Guo, X.K.; Zhou, W.F. Experimental Research on the Cracks of HRB500E High-strength Anti-seismic Steel Bar High-titanium Heavy-slag Concrete Beams. Earthq. Resist. Eng. Retrofit. 2016, 38, 78–84. [Google Scholar]
- Li, Y.; Liu, X.f.; Ding, Q.J.; Wu, M.K.; Li, H. Study on the column performance of high titanium heavy slag reinforced concrete. Concrete 2015, 07, 49–51. [Google Scholar] [CrossRef]
- Mu, T.M.; Liu, X.F.; Ding, Q.J.; Li, Y. Bend Performance of High Titanium Heavy Slag Concrete Beam. Archit. Technol. 2015, 46, 495–498. [Google Scholar]
- Li, X.W.; Li, X.W.; Yuan, X. Seismic performance of high titanium heavy slag high strength concrete columns. Appl. Mech. Mater. 2012, 174–177, 455–459. [Google Scholar] [CrossRef]
- Li, X.W.; Chen, W.; Li, X.W. Experimental study on seismic performance of high strength concrete columns with high titanium heavy slag as coarse and fine aggregates. Build. Struct. 2013, 43, 96–100. [Google Scholar]
- Li, X.W.; Chen, W.; Li, X.W. Experimental study on seismic performance of HRC columns with high titanium heavy slag aggregate. World Earthq. Eng. 2013, 29, 39–45. [Google Scholar]
- Jiao, T.; Chen, W.; Li, X.W. Experiment on columns with pangang fine slag aggregate concrete subjected to horizontal low cyclic loading. Earthq. Resist. Eng. Retrofit. 2013, 35, 75–79. [Google Scholar]
- Jiao, T.; Li, X.W.; Chen, W.; Li, X.W. Ductility Test of reinforced concrete columns with full blast Furnace Slag. China Concr. Cem. Prod. 2013, 2, 60–63. [Google Scholar]
- Sun, J.K.; Chen, W.; Huang, S.H.; Li, Y.M. Mechanics performance of complex high titanium heavy slag reinforcement concrete beam. Adv. Mater. Res. 2010, 168–170, 2013–2022. [Google Scholar] [CrossRef]
- Chen, W.; Huang, S.H.; Sun, J.K.; Jiao, T. Experiment reseach on flexural performance of RC beam by high titanium blast furnance slag. SC. Build. Sci. 2009, 35, 51–55. [Google Scholar]
- Huang, S.H.; Wang, J.; Chen, B.; Duan, H.F. Study on normal section bending performance of blast furnace slag concrete beam with high strength carbon fiber rod. Build. Struct. 2017, 47, 65–69. [Google Scholar]
- Wang, J.; Xu, X.Q.; Huang, S.H. Experiment research on normal section flexural performance of flexural member by high titanium blast furnace slag. Constr. Technol. 2015, 58, 513–515. [Google Scholar]
- Sun, J.K.; Huang, S.H.; Chen, K.C.; Zhou, W.F.; Guo, X.K. Shear Performance Test Study of Complex High Titanium Heavy Slag Concrete Restrained Beams with Web Reinforcement of at Different Longitudinal Reinforcement Ratios. Build. Sci. 2016, 32, 78–85. [Google Scholar]
- Feng, S.Q.; Li, X.W.; Zhen, Q.; Zhang, Z.W.; Yang, J.F. Study on Shear behavior of High Titanium blast Furnace heavy Slag Beam. SC. Archit. 2016, 36, 114–116. [Google Scholar]
- Zhong, S.T. Concrete-Filled Steel Tubular Structures; Tsinghua University Press: Beijing, China, 2003. [Google Scholar]
- Kupfer, H.; Hilsdorf, H.K.; Rüsch, H. Behavior of Concrete under Biaxial Stress. ACI J. Proc. 1969, 66, 656–666. [Google Scholar]
- Eurocode 4: Design of Composite Steel and Concrete Structures-Part1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004.
- ANSI/AISC 360-10. Specification for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 2010. [Google Scholar]
- AIJ. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures; Architectural Institute of Japan: Tokyo, Japan, 1997. [Google Scholar]
- Deutsch Norm DIN18800-5:2007-03. Steel Structures—Part 5: Composite Structures of Steel and Concrete—Design and Construction; Normenausschuss Bauwesen (NABau) im DIN: Berlin, Germany, 2007. [Google Scholar]
- Industry Standards of the People’s Republic of China. Technical Code for Concrete Filled Steel Tubular Structures (GB50936-2014); Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2014.
- Uenaka, K. Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression. Thin Wall. Struct. 2014, 78, 131–137. [Google Scholar] [CrossRef]
- Chung, K.S.; Kim, J.H.; Yoo, J.H. Prediction of hysteretic behavior of high-strength square concrete-filled steel tubular columns subjected to eccentric loading. Int. J. Steel Struct. 2012, 12, 243–252. [Google Scholar] [CrossRef]
- Farajpourbonab, E.; Kute, S.Y.; Inamdar, V.M. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading. Int. J. Adv. Struct. Eng. 2018, 10, 61–72. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Kharoob, O.F. Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes. Thin Wall. Struct. 2014, 79, 23–37. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Elchalakani, M.; Patel, V.I. Overall buckling behaviour of circular concrete-filled dual steel tubular columns with stainless steel external tubes. Thin Wall. Struct. 2017, 115, 336–348. [Google Scholar] [CrossRef]
- Pagoulatou, M.; Sheehan, T.; Dai, X.H.; Lam, D. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 2014, 72, 102–112. [Google Scholar] [CrossRef]
- Portolés, J.M.; Serra, E.; Romero, M.L. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. J. Constr. Steel Res. 2013, 86, 107–114. [Google Scholar] [CrossRef]
- Liu, S.M.; Liu, Y.J.; Chen, X.K.; Chen, P.X. Experimental study on steel fiber reinforcement high strength concrete-filled rectangular steel tubular column stiffened with perfobond strip under axial compression. J. Build. Struct. 2018, 39, 22–28. [Google Scholar]
- Liu, Y.J.; LI, H.; Zhang, N.; Liu, J.P.; Sun, X.B. Interface Bond-slip Performance of Rectangular Concrete-filled Steel Tube Stiffened by PBL. J. Archit. Civ. Eng. 2015, 32, 1–7. [Google Scholar]
- Abramski, M. Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Arch. Civ. Mech. Eng. 2018, 18, 902–913. [Google Scholar] [CrossRef]
- Zeghiche, J.; Chaoui, K. An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 53–66. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.Y.; Liu, C.Y. Confinement Path-dependent Analytical Model for FRP-Confined Concrete and Concrete-filled Steel Tube Subjected to Axial Compression. Compos. Struct. 2018, 201, 234–247. [Google Scholar] [CrossRef]
- Industry Standards of the People’s Republic of China. Specification for Mix Proportion Design of Ordinary Concrete (JGJ55-2011); Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2011.
- American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14); ACI: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Cheng, Z.Q. Experimental Research Field of High Performance Shale Lightweight Aggregate Concrete. Master’s Thesis, Central South University, Changsha, China, 2007. [Google Scholar]
- Wuhan University of Technology. Technical Guide for Application of Manufactured Sand in Concretes; China Communications Press: Beijing, China, 2008. [Google Scholar]
- Zhang, Y.C.; Wang, Q.P.; Mao, X.Y. Research on Mechanics Behavior of Stub-column of Concrete-filled Thin-walled Steel Tube Under Axial Load. Build. Struct. 2005, 35, 22–27. (In Chinese) [Google Scholar]
- Saleh, S.M. Size effect on the load carrying capacity of normal and lightweight concrete filled square steel tube composite columns. Int. J. Appl. Eng. Res. 2017, 12, 5261–5266. [Google Scholar]
- Ye, Y.; Han, L.H.; Tao, Z.; Guo, S.L. Experimental behavior of concrete-filled steel tubular members under lateral shear loads. J. Constr. Steel Res. 2016, 122, 226–237. [Google Scholar] [CrossRef]
- Xiang, X.Y.; Zhao, R.D.; Liu, Y. Calculation Method of Bearing Capacity for Self-compacting Recycled Concrete-f illed Steel-Tube Short Column. Railw. Eng. 2017, 2, 34–37. [Google Scholar]
- Zhu, M.C.; Liu, J.X.; Wang, Q.X.; Feng, X.F. Experimental research on square steel tubular columns filled with steel-reinforced self-consolidating high-strength concrete under axial load. Eng. Struct. 2010, 32, 2278–2286. [Google Scholar] [CrossRef]
Specimen Number | L (mm) | L/D | t (mm) | a | fy (MPa) | Concrete Number | fck (MPa) | ξ |
---|---|---|---|---|---|---|---|---|
PT300-1 | 300 | 2.6 | 3 | 0.114 | 237 | PTC30 | 20.7 | 1.31 |
BZ300-1 | 300 | 2.6 | 3 | 0.114 | 237 | BZC30 | 21.1 | 1.28 |
PT300-2 | 300 | 2.6 | 3 | 0.114 | 336 | PTC40 | 27.3 | 1.40 |
QZ300-1 | 300 | 2.6 | 3 | 0.114 | 336 | QZC40 | 28.5 | 1.34 |
BZ300-2 | 300 | 2.6 | 5 | 0.202 | 231 | BZC30 | 21.1 | 2.21 |
QZ300-2 | 300 | 2.6 | 5 | 0.202 | 231 | QZC30 | 22.4 | 2.08 |
BZ300-3 | 300 | 2.6 | 5 | 0.202 | 332 | BZC40 | 27.9 | 2.40 |
QZ300-3 | 300 | 2.6 | 5 | 0.202 | 332 | QZC40 | 28.5 | 2.35 |
PT400-1 | 400 | 3.5 | 3 | 0.114 | 237 | PTC30 | 20.7 | 1.31 |
BZ400-1 | 400 | 3.5 | 3 | 0.114 | 237 | BZC30 | 21.1 | 1.28 |
PT400-2 | 400 | 3.5 | 3 | 0.114 | 336 | PTC40 | 27.3 | 1.40 |
QZ400-1 | 400 | 3.5 | 3 | 0.114 | 336 | QZC40 | 28.5 | 1.34 |
BZ400-2 | 400 | 3.5 | 5 | 0.202 | 231 | BZC30 | 21.1 | 2.21 |
QZ400-2 | 400 | 3.5 | 5 | 0.202 | 231 | QZC30 | 22.4 | 2.08 |
BZ400-3 | 400 | 3.5 | 5 | 0.202 | 332 | BZC40 | 27.9 | 2.40 |
QZ400-3 | 400 | 3.5 | 5 | 0.202 | 332 | QZC40 | 28.5 | 2.35 |
PT500-1 | 500 | 4.4 | 3 | 0.114 | 237 | PTC30 | 20.7 | 1.31 |
BZ500-1 | 500 | 4.4 | 3 | 0.114 | 237 | BZC30 | 21.1 | 1.28 |
PT500-2 | 500 | 4.4 | 3 | 0.114 | 336 | PTC40 | 27.3 | 1.40 |
QZ500-1 | 500 | 4.4 | 3 | 0.114 | 336 | QZC40 | 28.5 | 1.34 |
BZ500-2 | 500 | 4.4 | 5 | 0.202 | 231 | BZC30 | 21.1 | 2.21 |
QZ500-2 | 500 | 4.4 | 5 | 0.202 | 231 | QZC30 | 22.4 | 2.08 |
BZ500-3 | 500 | 4.4 | 5 | 0.202 | 332 | BZC40 | 27.9 | 2.40 |
QZ500-3 | 500 | 4.4 | 5 | 0.202 | 332 | QZC40 | 28.5 | 2.35 |
PT600-1 | 600 | 5.3 | 3 | 0.114 | 237 | PTC30 | 20.7 | 1.31 |
BZ600-1 | 600 | 5.3 | 3 | 0.114 | 237 | BZC30 | 21.1 | 1.28 |
PT600-2 | 600 | 5.3 | 3 | 0.114 | 336 | PTC40 | 27.3 | 1.40 |
QZ600-1 | 600 | 5.3 | 3 | 0.114 | 336 | QZC40 | 28.5 | 1.34 |
BZ600-2 | 600 | 5.3 | 5 | 0.202 | 231 | BZC30 | 21.1 | 2.21 |
QZ600-2 | 600 | 5.3 | 5 | 0.202 | 231 | QZC30 | 22.4 | 2.08 |
BZ600-3 | 600 | 5.3 | 5 | 0.202 | 332 | BZC40 | 27.9 | 2.40 |
QZ600-3 | 600 | 5.3 | 5 | 0.202 | 332 | QZC40 | 28.5 | 2.35 |
Material | Strength Grade | Elastic Modulus | Poisson’s Ratio | ||||
---|---|---|---|---|---|---|---|
Value (MPa) | Standard Deviation (MPa) | Variable Coefficient | Value | Standard Deviation | Variable Coefficient | ||
Concrete | PTC30 | 30,200 | 1812 | 0.06 | 0.189 | 0.01323 | 0.07 |
BZC30 | 30,400 | 3040 | 0.1 | 0.186 | 0.01116 | 0.06 | |
QZC30 | 30,500 | 3660 | 0.12 | 0.191 | 0.01719 | 0.09 | |
PTC40 | 32,800 | 2624 | 0.08 | 0.194 | 0.0194 | 0.10 | |
BZC40 | 33,100 | 3310 | 0.1 | 0.193 | 0.01544 | 0.08 | |
QZC40 | 33,400 | 2338 | 0.07 | 0.197 | 0.02167 | 0.11 | |
Steel | Q235 | 208,000 | 8320 | 0.04 | 0.284 | 0.00568 | 0.02 |
Q345 | 206,000 | 6180 | 0.03 | 0.290 | 0.0029 | 0.01 |
Types | Design Grading | Cement (kg) | Fly Ash (kg) | Slag Sand (kg) | Natural Sand (kg) | Slag Stone (kg) | Natural Stone (kg) | Admixture (kg) | Water (kg) | Bulk Density (kg/m3) | Varieties of Cement | Concrete Numbers |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Full-high titanium slag concrete | C30 | 305 | 120 | 945 | — | 942 | — | 8.5 | 200 | 2521 | P.C32.5R | QZC30 |
C40 | 345 | 95 | 918 | — | 965 | — | 10.6 | 200 | 2534 | P.O42.5R | QZC40 | |
Semi-high titanium slag concrete | C30 | 315 | 115 | 450 | 450 | 498 | 498 | 8.6 | 200 | 2535 | P.C32.5R | BZC30 |
C40 | 351 | 82 | 443 | 443 | 508 | 508 | 10.4 | 200 | 2545 | P.O42.5R | BZC40 | |
Ordinary concrete | C30 | 320 | 98 | — | 735 | — | 1185 | 8.4 | 200 | 2546 | P.C32.5R | PTC30 |
C40 | 365 | 80 | — | 698 | — | 1201 | 10.7 | 200 | 2555 | P.O42.5R | PTC40 |
Specimen Number | Nt (kN) | EC4(2004) | AISC360-10 | GB50936-2014 | Nk (kN) | |||
---|---|---|---|---|---|---|---|---|
Calculated Value (kN) | Ratio | Calculated Value (kN) | Ratio | Calculated Value (kN) | Ratio | |||
PT300-1 | 810.6 | 766.6 | 94.57% | 754.3 | 93.05% | 798.5 | 98.51% | 437.6 |
BZ300-1 | 823.4 | 782.9 | 95.08% | 761.6 | 92.49% | 798.9 | 97.02% | 441.2 |
PT300-2 | 1141.7 | 1107.4 | 97.00% | 1067.6 | 93.51% | 1138.7 | 99.74% | 601.6 |
QZ300-1 | 1150.5 | 1103.2 | 95.89% | 1059.8 | 92.12% | 1120.3 | 97.38% | 612.6 |
BZ300-2 | 1089.9 | 1060.6 | 97.31% | 1006.5 | 92.35% | 1082.9 | 99.36% | 574.8 |
QZ300-2 | 1107.3 | 1075.0 | 97.08% | 1020.5 | 92.16% | 1083.9 | 97.89% | 585.8 |
BZ300-3 | 1528.4 | 1484.4 | 97.12% | 1405.9 | 91.99% | 1490.0 | 97.49% | 805.4 |
QZ300-3 | 1539.1 | 1490.5 | 96.84% | 1413.0 | 91.81% | 1507.3 | 97.93% | 810.5 |
PT400-1 | 792.9 | 769.7 | 97.07% | 726.5 | 91.63% | 826.7 | 104.26% | 437.6 |
BZ400-1 | 799.7 | 780.5 | 97.60% | 731.3 | 91.45% | 796.2 | 99.56% | 441.2 |
PT400-2 | 1091.4 | 1068.7 | 97.92% | 996.0 | 91.26% | 1107.2 | 101.45% | 601.6 |
QZ400-1 | 1110.0 | 1086.6 | 97.89% | 1011.0 | 91.08% | 1093.0 | 98.47% | 612.6 |
BZ400-2 | 1075.8 | 1055.2 | 98.09% | 977.9 | 90.90% | 1074.3 | 99.86% | 574.8 |
QZ400-2 | 1094.5 | 1073.2 | 98.05% | 992.9 | 90.72% | 1096.4 | 100.17% | 585.8 |
BZ400-3 | 1528.2 | 1494.6 | 97.80% | 1383.6 | 90.54% | 1499.4 | 98.12% | 805.4 |
QZ400-3 | 1537.1 | 1504.0 | 97.85% | 1388.9 | 90.36% | 1529.6 | 99.51% | 810.5 |
PT500-1 | 723.0 | 695.7 | 96.22% | 652.0 | 90.18% | 713.8 | 98.73% | 437.6 |
BZ500-1 | 716.4 | 685.4 | 95.67% | 644.1 | 89.91% | 712.4 | 99.44% | 441.2 |
PT500-2 | 1001.1 | 965.3 | 96.42% | 899.0 | 89.80% | 977.6 | 97.65% | 601.6 |
QZ500-1 | 995.7 | 920.7 | 92.47% | 893.1 | 89.70% | 986.1 | 99.04% | 612.6 |
BZ500-2 | 946.5 | 924.7 | 97.70% | 848.0 | 89.59% | 940.3 | 99.34% | 574.8 |
QZ500-2 | 961.4 | 948.0 | 98.61% | 860.3 | 89.48% | 935.5 | 97.31% | 585.8 |
BZ500-3 | 1279.4 | 1217.7 | 95.18% | 1143.5 | 89.38% | 1262.6 | 98.69% | 805.4 |
QZ500-3 | 1323.3 | 1208.9 | 91.35% | 1181.3 | 89.27% | 1295.6 | 97.91% | 810.5 |
PT600-1 | 556.2 | 547.8 | 98.49% | 495.9 | 89.16% | 548.5 | 98.62% | 437.6 |
BZ600-1 | 531.8 | 538.3 | 101.22% | 473.6 | 89.06% | 515.0 | 96.84% | 441.2 |
PT600-2 | 771.4 | 757.6 | 98.21% | 686.2 | 88.96% | 757.6 | 98.21% | 601.6 |
QZ600-1 | 759.3 | 759.1 | 99.97% | 674.6 | 88.84% | 748.1 | 98.52% | 612.6 |
BZ600-2 | 743.6 | 728.3 | 97.94% | 659.9 | 88.74% | 717.5 | 96.49% | 574.8 |
QZ600-2 | 746.5 | 737.2 | 98.75% | 661.7 | 88.64% | 725.6 | 97.20% | 585.8 |
BZ600-3 | 1022.1 | 1012.2 | 99.03% | 904.9 | 88.53% | 1000.7 | 97.91% | 805.4 |
QZ600-3 | 1034.0 | 1022.1 | 98.85% | 914.3 | 88.42% | 994.2 | 96.15% | 810.5 |
Sample | EC4 (2004) | AISC360-10 | GB50936-2014 | |||
---|---|---|---|---|---|---|
μ | σ | μ | σ | μ | σ | |
Total sample | 97.16% | 1.93% | 90.47% | 1.43% | 98.59% | 1.56% |
PT Sample | 97.48% | 1.27% | 90.94% | 1.16% | 99.65% | 1.19% |
BZ Sample | 96.99% | 1.70% | 90.41% | 1.42% | 98.34% | 1.39% |
QZ Sample | 96.37% | 2.60% | 90.22% | 2.02% | 98.12% | 2.23% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Chen, W.; Ruan, X.; Tang, X. Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns. Appl. Sci. 2019, 9, 2021. https://doi.org/10.3390/app9102021
Zhou C, Chen W, Ruan X, Tang X. Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns. Applied Sciences. 2019; 9(10):2021. https://doi.org/10.3390/app9102021
Chicago/Turabian StyleZhou, Chunli, Wei Chen, Xiaolong Ruan, and Xueying Tang. 2019. "Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns" Applied Sciences 9, no. 10: 2021. https://doi.org/10.3390/app9102021
APA StyleZhou, C., Chen, W., Ruan, X., & Tang, X. (2019). Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns. Applied Sciences, 9(10), 2021. https://doi.org/10.3390/app9102021