Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Medium
2.2. Fermentation Media
2.3. Repeated-Batch Fermentations
2.4. Analysis
2.5. Kinetic Model Development and Determination of Kinetic Parameters
2.5.1. Cell Growth Model
2.5.2. Product Formation Kinetics
2.5.3. Sugar Consumption Kinetics
2.6. Model Evaluation and Validation
2.7. Techno-Economic Analysis of Ethanol Production
3. Results and Discussion
3.1. Kinetic Modeling of Cell Growth
3.2. Kinetic Modeling of Product Formation
3.3. Kinetic Modeling of Substrate Consumption
3.4. Techno-Economic Analysis of Ethanol Fermentations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Germec, M.; Kartal, F.K.; Bilgic, M.; Ilgin, M.; Ilhan, E.; Güldali, H.; Isci, A.; Turhan, I. Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol. Prog. 2016, 32, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Germec, M.; Turhan, I. Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 2018, 231, 101–109. [Google Scholar] [CrossRef]
- Germec, M.; Turhan, I.; Yatmaz, E.; Tetik, N.; Karhan, M. Fermentation of acid-pretreated tea processing waste for ethanol production using Saccharomyces cerevisiae. Sci. Bull Ser. F Biotechnol. 2016, 20, 269–274. [Google Scholar]
- Bahry, H.; Pons, A.; Abdallah, R.; Pierre, G.; Delattre, C.; Fayad, N.; Taha, S.; Vial, C. Valorization of carob waste: Definition of a second-generation bioethanol production process. Bioresour. Technol. 2017, 235, 25–34. [Google Scholar] [CrossRef]
- Germec, M.; Turhan, I.; Karhan, M.; Demirci, A. Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 2015, 161, 304–311. [Google Scholar] [CrossRef]
- Turhan, I.; Bialka, K.L.; Demirci, A.; Karhan, M. Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour. Technol. 2010, 101, 5290–5296. [Google Scholar] [CrossRef] [PubMed]
- Yatmaz, E.; Turhan, I.; Karhan, M. Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour. Technol. 2013, 135, 365–371. [Google Scholar]
- Germec, M.; Turhan, I. Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Convers. Biorefinery 2018, 8, 607–619. [Google Scholar] [CrossRef]
- Germec, M.; Ozcan, A.; Yilmazer, C.; Tas, N.; Onuk, Z.; Demirel, F.; Turhan, I. Ethanol fermentation from microwave-assisted acid pretreated raw materials by Scheffersomyces stipitis. Agrolife Sci. J. 2017, 6, 112–118. [Google Scholar]
- Izmirlioglu, G.; Demirci, A. Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl. Sci. 2012, 2, 738–753. [Google Scholar] [CrossRef]
- Izmirlioglu, G.; Demirci, A. Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 2016, 181, 643–651. [Google Scholar] [CrossRef]
- Izmirlioglu, G.; Demirci, A. Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 2017, 202, 260–270. [Google Scholar] [CrossRef]
- Brinkman, M.L.; da Cunha, M.P.; Heijnen, S.; Wicke, B.; Guilhoto, J.J.; Walter, A.; Faaij, A.P.; van der Hilst, F. Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil. Renew. Sustain. Energy Rev. 2018, 88, 347–362. [Google Scholar] [CrossRef]
- Chen, X.; Khanna, M. Effect of corn ethanol production on Conservation Reserve Program acres in the US. Appl. Energy 2018, 225, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, S.K.; Ahmed, A.S.; Ani, F.N. Review on bioethanol as alternative fuel for spark ignition engines. Renew. Sustain. Energy Rev. 2016, 56, 820–835. [Google Scholar] [CrossRef]
- RFA. Renewable Fuel Association of the United Nations. Available online: https://ethanolrfa.org/resources/industry/statistics/ (accessed on 4 September 2018).
- Sarris, D.; Papanikolaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; McLaren, J.; Madl, R.; Wang, D. Biofuels from Lignocellulosic Biomass. In Sustainable Biotechnology; Singh, O.V., Harvey, S.P., Eds.; Springer: New York, NY, USA, 2010; pp. 19–41. [Google Scholar] [CrossRef]
- Brethauer, S.; Wyman, C.E. Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour. Technol. 2010, 101, 4862–4874. [Google Scholar] [CrossRef]
- Waites, M.J.; Morgan, N.L.; Rockey, J.S.; Higton, G. Industrial Microbiology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cheng, K.-C.; Demirci, A.; Catchmark, J.M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 2010, 87, 445–456. [Google Scholar] [CrossRef]
- Ercan, D.; Demirci, A. Current and future trends for biofilm reactors for fermentation processes. Crit. Rev. Biotechnol. 2015, 35, 1–14. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Demirci, A.; Catchmark, J.M.; Puri, V.M. Modeling of pullulan fermentation by using a color variant strain of Aureobasidium pullulans. J. Food Eng. 2010, 98, 353–359. [Google Scholar] [CrossRef]
- Chang, D.; Yu, Z.; Islam, Z.; Zhang, H. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177. Appl. Microbiol. Biotechnol. 2015, 99, 4093–4105. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Islas, D.; Páez-Lerma, J.; Soto-Cruz, N.O.; Gracida, J. Modelling of ethanol production from red beet juice by Saccharomyces cerevisiae under thermal and acid stress conditions. Food Technol. Biotechnol. 2014, 52, 93–100. [Google Scholar]
- Martynova, J.; Mednis, M.; Vigants, A.; Zikmanis, P. Kinetic modeling of ethanol fermentation by yeast Kluyveromyces marxianus from lactose- and inulin-containing substrates. Eng. Rural Dev. 2017, 88–97. [Google Scholar]
- Sasikumar, E.; Viruthagiri, T. Optimization of process conditions using response surface methodology (RSM) for ethanol production from pretreated sugarcane bagasse: Kinetics and modeling. Bioenergy Res. 2008, 1, 239–247. [Google Scholar] [CrossRef]
- Suresh, S.; Srivastava, V.; Sakthivel, S.; Arisutha, S. Kinetic Modeling of Ethanol Production for Substrate–Microbe System. In Biorefining of Biomass to Biofuels; Springer: Berlin/Heidelberg, Germany, 2018; pp. 361–372. [Google Scholar]
- Teoh, Y.; Ooi, Z. Evaluation of unstructured kinetic models for the production of bioethanol from banana and pineapple wastes. Bioresources 2016, 11, 4295–4305. [Google Scholar] [CrossRef]
- Shuler, M.L.; Kargi, F.; DeLisa, M. Bioprocess Engineering: Basic Concepts, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Rohit, S.G.; Jyoti, P.K.; Subbi, R.R.T.; Naresh, M.; Senthilkumar, S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem. Eng. J. 2018, 137, 284–293. [Google Scholar] [CrossRef]
- Ho, K.; Pometto, A.; Hinz, P.N.; Dickson, J.S.; Demirci, A. Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl. Environ. Microbiol. 1997, 63, 2516–2523. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Pearl, R.; Reed, L.J. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Natl. Acad. Sci. USA 1920, 6, 275–288. [Google Scholar] [CrossRef]
- Luedeking, R.; Piret, E.L. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1959, 1, 393–412. [Google Scholar] [CrossRef]
- Don, M.; Shoparwe, N. Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem. Eng. J. 2010, 49, 95–103. [Google Scholar] [CrossRef]
- Mohammad, F.; Badr-Eldin, S.; El-Tayeb, O.; El-Rahman, O.A. Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenergy 1995, 8, 121–129. [Google Scholar] [CrossRef]
- Germec, M.; Cheng, K.-C.; Karhan, M.; Demirci, A.; Turhan, I. Application of mathematical models to ethanol fermentation in biofilm reactor with carob extract. Biomass Convers. Biorefinery 2019. in print. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
- Ross, T. Predictive Food Microbiology Models in the Meat Industry; Meat and Livestock Australia: North Sydney, Australia, 1999. [Google Scholar]
- Feng, J.; Zhang, J.-S.; Jia, W.; Yang, Y.; Liu, F.; Lin, C.-C. An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect. Biotechnol. Bioprocess. Eng. 2014, 19, 727–732. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.; Alonso, J.; Vázquez, M. Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol. 2004, 21, 143–148. [Google Scholar] [CrossRef]
- Demirci, A.; Pometto, A., III; Ho, K.G. Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. Biotechnol. 1997, 19, 299–304. [Google Scholar] [CrossRef]
- Baranyi, J.; Pin, C. Modeling the history effect on microbial growth and survival: Deterministic and stochastic approaches. Modeling Microb. Responses Food 2004, 285–301. [Google Scholar]
- Cayré, M.A.E.; Vignolo, G.; Garro, O. Modeling lactic acid bacteria growth in vacuum-packaged cooked meat emulsions stored at three temperatures. Food Microbiol. 2003, 20, 561–566. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Wang, J.; Fan, Y.; Shi, W.; Liu, X.; Shun, Q. Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 2019, 168, 946–952. [Google Scholar] [CrossRef]
- Zeng, A.P.; Ross, A.; Biebl, H.; Tag, C.; Günzel, B.; Deckwer, W.D. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 1994, 44, 902–911. [Google Scholar] [CrossRef]
- Sinclair, C.; Kristiansen, B. Fermentation kinetics and modeling. Milton Keynes. Open Univ. Press. J. Chem Tech. Biotech. 1987, 44, 330. [Google Scholar]
Parameter Estimation | Medium A | Medium B | Medium C | Medium D | Medium E |
---|---|---|---|---|---|
Cell growth | |||||
µmax (h−1) | 0.4076 | 0.4002 | 0.2960 | 0.3618 | 0.3283 |
X0 (g/L) | 0.80 | 0.53 | 0.82 | 0.73 | 0.62 |
Xmax (g/L) | 9.98 | 9.73 | 9.73 | 9.02 | 8.96 |
RMSE (g/L) | 1.04 | 0.71 | 0.61 | 0.57 | 0.41 |
MAE (g/L) | 0.80 | 0.57 | 0.49 | 0.46 | 0.31 |
R2 | 0.9561 | 0.9750 | 0.9791 | 0.9804 | 0.9914 |
Slope | 1.19 | 1.10 | 1.08 | 1.09 | 1.06 |
BF | 1.29 | 1.28 | 1.19 | 1.18 | 1.19 |
AF | 1.38 | 1.37 | 1.26 | 1.25 | 1.23 |
Ethanol production | |||||
β (g P/g X.h) | 0.0011 | 0.0241 | 0.0329 | 0.0203 | 0.0571 |
a (g P/g X) | 2.6724 | 2.2205 | 1.6429 | 2.2757 | 1.3559 |
RMSE (g/L) | 3.46 | 1.71 | 1.84 | 1.98 | 1.43 |
MAE (g/L) | 2.11 | 1.22 | 1.40 | 1.54 | 0.88 |
R2 | 0.9217 | 0.9794 | 0.9533 | 0.9644 | 0.9870 |
Slope | 0.92 | 0.98 | 0.97 | 0.97 | 1.07 |
BF | 0.80 | 0.86 | 0.91 | 0.85 | 0.85 |
AF | 1.26 | 1.18 | 1.16 | 1.21 | 1.17 |
Sugar consumption | |||||
Z (g S/g X.h) | 0.0012 | 0.0284 | 0.0106 | 0.0120 | 0.0048 |
γ (g S/g X) | 5.3443 | 5.3409 | 5.5775 | 5.4862 | 5.723 |
RMSE (g/L) | 1.51 | 1.40 | 0.38 | 2.19 | 1.01 |
MAE (g/L) | 0.87 | 0.65 | 0.20 | 1.34 | 0.63 |
R2 | 0.9961 | 0.9921 | 0.9997 | 0.9936 | 0.9949 |
Slope | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 |
BF | 1.04 | 1.01 | 1.02 | 0.86 | 0.96 |
AF | 1.04 | 1.10 | 1.02 | 1.16 | 1.07 |
Φ-value | 0.212 | 0.078 | 0.075 | 0.096 | 0.055 |
Microorganism | Substrate | µmax | Xmax | a | β | γ | Z | Ref. |
---|---|---|---|---|---|---|---|---|
Aspergillus terrus and Kluveromyces marxianus | Banana waste | 0.0187 | 20.34 | 0.4529 | −0.00003 | −0.28820 | 0.17450 | [29] |
A. terrus and K. marxianus | Pineapple waste | 0.0037 | 36.74 | 0.3661 | −0.0036 | −29.3869 | 0.0014 | [29] |
Escherichia coli | Waste cotton hydrolysate | 0.21 | 3.75 | 0.05 | 0.29 | 0.25 | 0.47 | [24] |
S. cerevisiae ITD00196 | Red Beet Juice | 0.4669 | 6.35 | 5.3184 | −0.044 | 0.0732 | −0.0848 | [25] |
S. cerevisiae ATCC 9763 | Red Beet Juice | 0.3794 | 5.31 | 4.5326 | 0.1047 | 0.074 | 0.095 | [25] |
K. marxianus DSM 5422 | Whey permeate | 0.75 | - | 5 | 0.4185 | 0.0394 | 0.4287 | [26] |
K. marxianus DSM 5422 | Lactose | 0.6567 | - | 5 | 0.0686 | 0.0673 | 0.062 | [26] |
K. marxianus DSM 5422 | Inulin | 0.75 | - | 4.1232 | 0.0033 | 0.0785 | 0 | [26] |
K. fragilis-NCIM 0557 | Sugarcane bagasse | 0.2 | 5.50 | 0.38 | 0.012 | 8.2 | 0.008 | [27] |
K. marxianus | Crude whey | 0.095 | 12.80 | 0.733 | 0 | 3.3846 | 0.135 | [28] |
S. cerevisiae and Candida tropicalis | Corn stover | 0.125 | 3.16 | 2.392 | 0.013 | 0.488 | 0.007 | [47] |
Medium | A | B | C | D | E | A | B | C | D | E |
---|---|---|---|---|---|---|---|---|---|---|
X kinetics | Experimental | Logistic model | ||||||||
ΔX (g/L) | 7.28 | 8.01 | 7.78 | 7.47 | 7.56 | 9.19 | 9.20 | 8.89 | 8.28 | 8.33 |
YX/S (%) | 14.83 | 14.98 | 15.17 | 14.82 | 15.14 | 18.60 | 16.60 | 17.16 | 17.28 | 17.14 |
QX (g/L/h) | 0.71 | 0.77 | 0.64 | 0.65 | 0.64 | 0.77 | 0.79 | 0.65 | 0.67 | 0.65 |
λ (h) | 4.83 | 5.18 | 5.71 | 4.31 | 4.50 | 0.70 | 1.81 | 1.78 | 1.24 | 1.94 |
µmax (h−1) | 0.41 | 0.40 | 0.30 | 0.36 | 0.33 | 0.41 | 0.40 | 0.30 | 0.36 | 0.33 |
P kinetics | Experimental | LP model | ||||||||
ΔP (g/L) | 24.51 | 24.12 | 21.80 | 23.50 | 19.24 | 24.82 | 25.75 | 21.52 | 23.07 | 22.48 |
YP/S (%) | 49.94 | 45.07 | 42.48 | 46.58 | 38.55 | 50.26 | 46.49 | 41.55 | 48.12 | 46.22 |
YP/X (g/g) | 3.37 | 3.01 | 2.80 | 3.14 | 2.55 | 2.70 | 2.80 | 2.42 | 2.78 | 2.70 |
QP (g/L/h) | 2.56 | 2.19 | 1.40 | 1.90 | 1.16 | 2.05 | 1.90 | 1.22 | 1.64 | 1.13 |
η (%) | 97.73 | 88.20 | 83.14 | 91.16 | 75.43 | 98.36 | 90.97 | 81.31 | 94.17 | 90.46 |
S kinetics | Experimental | MLP model | ||||||||
ΔS (g/L) | 49.09 | 53.51 | 51.30 | 50.44 | 49.91 | 49.38 | 55.40 | 51.81 | 47.94 | 48.63 |
YS/X (g/g) | 6.74 | 6.68 | 6.59 | 6.75 | 6.60 | 5.38 | 6.02 | 5.83 | 5.79 | 5.84 |
QS (g/L/h) | 4.31 | 5.00 | 3.69 | 3.80 | 3.47 | 4.10 | 4.40 | 3.65 | 3.77 | 3.71 |
SUY (%) | 87.02 | 86.87 | 85.77 | 88.06 | 86.14 | 87.54 | 89.95 | 86.61 | 83.70 | 83.95 |
Medium components | Cost/g (€) | Cost/g (₺) | CAS Number |
---|---|---|---|
Carob pod | 0.000440 | 0.002621 | |
Yeast Extract | 0.260000 | 1.548950 | 8013012 |
(NH4)2SO4 | 0.093400 | 0.556431 | 7783202 |
KH2PO4 | 0.055600 | 0.331237 | 7778770 |
MgSO47H2O | 0.059600 | 0.355067 | 10034998 |
CaCI22H2O | 0.056200 | 0.334812 | 10035048 |
Online trading cost of chemicals used in the media as of 13th February 2019 on Sigmaaldrich.com | |||
Online bull trading cost of carob pods (kibbled and broken) as of 13th February 2019 on Alibaba.com | |||
Selling price of ethanol (CAS Number: 0000064175) = 0.03207 €/g = 0.1911 ₺/g on Sigmaaldrich.com | |||
1 € = 5.9575 ₺ (As of 13th February, 2019) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germec, M.; Turhan, I.; Karhan, M.; Demirci, A. Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Appl. Sci. 2019, 9, 2121. https://doi.org/10.3390/app9102121
Germec M, Turhan I, Karhan M, Demirci A. Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Applied Sciences. 2019; 9(10):2121. https://doi.org/10.3390/app9102121
Chicago/Turabian StyleGermec, Mustafa, Irfan Turhan, Mustafa Karhan, and Ali Demirci. 2019. "Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor" Applied Sciences 9, no. 10: 2121. https://doi.org/10.3390/app9102121
APA StyleGermec, M., Turhan, I., Karhan, M., & Demirci, A. (2019). Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Applied Sciences, 9(10), 2121. https://doi.org/10.3390/app9102121