Molecular Distillation-Induced Deacidification of Soybean Oil Isolated by Enzyme-Assisted Aqueous Extraction: Effect of Distillation Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Soybean Oil by EAE
2.3. Molecular Distillation-Induced Deacidification
2.4. Color
2.5. Acid Value
2.6. Peroxide Value
2.7. p-Anisidine Value
2.8. Tocopherol Content
2.9. Fatty Acid Content
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characterization of EAE-Produced Soybean Oil
3.2. Effect of Molecular Distillation Parameters on Deacidification Performance
3.3. Effect of Molecular Distillation Parameters on Lovibond Color
3.4. Effect of Molecular Distillation Parameters on the Extent of Soybean Oil Oxidation
3.5. Effect of Molecular Distillation Parameters on Tocopherol Content
3.6. Effect of Molecular Distillation Parameters on Fatty Acid Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosenthal, A.; Pyle, D.L.; Niranjan, K.; Gilmour, S.; Trinca, L. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzym. Microb. Technol. 2001, 28, 499–509. [Google Scholar] [CrossRef]
- Purkrtova, Z.; Jolivet, P.; Miquel, M.; Chardot, T. Structure and function of seed lipid body-associated proteins. C. R. Biol. 2008, 331, 746–754. [Google Scholar] [CrossRef]
- Rosenthal, A.; Pyle, D.L.; Niranjan, K. Aqueous and enzymatic processes for edible oil extraction. Enzym. Microb. Technol. 1996, 19, 402–420. [Google Scholar] [CrossRef]
- Campbell, K.A.; Glatz, C.E.; Johnson, L.A.; Jung, S.; De Moura, J.M.N.; Kapchie, V.; Murphy, P. Advances in aqueous extraction processing of soybeans. J. Am. Oil Chem. Soc. 2011, 88, 449–465. [Google Scholar] [CrossRef]
- Bocevska, M.; Karlović, D.; Turkulov, J.; Pericin, D. Quality of corn germ oil obtained by aqueous enzymatic extraction. J. Am. Oil Chem. Soc. 1993, 70, 1273–1277. [Google Scholar] [CrossRef]
- Kim, I.H.; Yoon, S.H. Effect of extraction solvents on oxidative stability of crude soybean oil. J. Am. Oil Chem. Soc. 1990, 67, 165–167. [Google Scholar] [CrossRef]
- McGlone, O.C.; Canales, L.M.; Carter, J.V. Coconut Oil Extraction by a New Enzymatic Process. J. Food Sci. 2010, 51, 695–697. [Google Scholar] [CrossRef]
- Rodrigues, C.E.C.; Goncalves, C.B.; Batista, E.; Meirelles, A.J. Deacidification of Vegetable Oils by Solvent Extraction. Recent Pat. Eng. 2007, 1, 95–102. [Google Scholar] [CrossRef]
- Cvengros, J. Physical refining of edible oils. J. Am. Oil Chem. Soc. 1995, 72, 1193–1196. [Google Scholar] [CrossRef]
- Fernandes, K.V.; Papadaki, A.; da Silva, J.A.C.; Fernandez-Lafuente, R.; Koutinas, A.A.; Freire, D.M.G. Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind. Crop. Prod. 2018, 116, 90–96. [Google Scholar] [CrossRef]
- Papadaki, A.; Papapostolou, H.; Alexandri, M.; Kopsahelis, N.; Papanikolaou, S.; Castro, A.M.D.; Freire, D.M.G.; Koutinas, A.A. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environ. Sci. Pollut. Res. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F.J.F.c. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Lutišan, J.; Cvengroš, J.; Micov, M. Heat and mass transfer in the evaporating film of a molecular evaporator. Chem. Eng. J. 2002, 85, 225–234. [Google Scholar] [CrossRef]
- Ping, S.; He, J.; Sun, P.; Jiang, S. Process optimization for the production of biodiesel from rapeseed soapstock by a novel method of short path distillation. Biosyst. Eng. 2009, 102, 285–290. [Google Scholar] [CrossRef]
- Watanabe, Y.; Nagao, T.; Hirota, Y.; Kitano, M.; Shimada, Y. Purification of tocopherols and phytosterols by a two-step in situ enzymatic reaction. J. Am. Oil Chem. Soc. 2004, 81, 339–345. [Google Scholar] [CrossRef]
- Martinello, M.; Hecker, G.; Pramparo, M.D.C. Grape seed oil deacidification by molecular distillation: Analysis of operative variables influence using the response surface methodology. J. Food Eng. 2007, 81, 60–64. [Google Scholar] [CrossRef]
- Wu, W.L.; Wang, C.; Zheng, J.X. Optimization of deacidification of low-calorie cocoa butter by molecular distillation. LWT Food Sci. Technol. 2012, 46, 563–570. [Google Scholar] [CrossRef]
- Ángela García, S.; Sanz, M.T.; Falkeborg, M.; Beltrán, S.; Guo, Z. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem. 2016, 190, 960–967. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, M.; Jiang, L.; Sui, X. Simplex-Centroid Mixture Design Applied to the Aqueous Enzymatic; Extraction of Fatty Acid-Balanced Oil from Mixed Seeds. J. Am. Oil Chem. Soc. 2013, 90, 349–357. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Method Cc 13b-45 Color Determination by Tintometer; American Oil Chemists’ Society Press: Champaign, IL, USA, 1973. [Google Scholar]
- Yong, W.; Zhao, M.; Song, K.; Wang, L.; Xue, H.; Tang, S.; Ying, W. Separation of diacylglycerols from enzymatically hydrolyzed soybean oil by molecular distillation. Sep. Purif. Technol. 2010, 75, 114–120. [Google Scholar] [CrossRef]
- More, N.S.; Gogate, P.R. Ultrasound assisted enzymatic degumming of crude soybean oil. Ultrason. Sonochem. 2018, 42, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.F.; Ito, V.M.; Batistella, C.B.; Maciel, M.R.W. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Sep. Purif. Technol. 2006, 48, 78–84. [Google Scholar] [CrossRef]
- Ning, L.; Yong, W.; Zhao, Q.; Zhao, M. Production of palm oil-based diacylglycerol using Lecitase Ultra-catalyzed glycerolysis and molecular distillation. Food Sci. Biotechnol. 2014, 23, 365–371. [Google Scholar] [CrossRef]
- Cvengroš, J.; Lutišan, J.; Micov, M. Feed temperature influence on the efficiency of a molecular evaporator. Chem. Eng. J. 2000, 78, 61–67. [Google Scholar] [CrossRef]
- Cermak, S.C.; John, A.L.; Evangelista, R.L. Enrichment of decanoic acid in cuphea fatty acids by molecular distillation. Ind. Crop. Prod. 2007, 26, 93–99. [Google Scholar] [CrossRef]
- Compton, D.L.; Laszlo, J.A.; Eller, F.J.; Taylor, S.L. Purification of 1,2-diacylglycerols from vegetable oils: Comparison of molecular distillation and liquid CO2 extraction. Ind. Crop. Prod. 2008, 28, 113–121. [Google Scholar] [CrossRef]
- Mishra, R.; Sharma, H.K.; Singh, C. Thermal oxidation of rice bran oil during oven test and microwave heating. J. Food Sci. Technol. 2012, 49, 221–227. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Qian, L.; Liu, Y. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation. Molecules 2016, 21, 1675. [Google Scholar] [CrossRef]
- Moraes, E.B.; Batistella, C.B.; Alvarez, M.E.T.; Filho, R.M.; Maciel, M.R.W. Evaluation of tocopherol recovery through simulation of molecular distillation process. Appl. Biochem. Biotechnol. 2004, 114, 689–711. [Google Scholar] [CrossRef]
- Martinello, M.A.; Villegas, M.; Pramparo, M.D.C. Retaining maximum antioxidative potency of wheat germ oil refined by molecular distillation. J. Sci. Food Agric. 2010, 87, 1559–1563. [Google Scholar] [CrossRef]
- Japir, A.A.-W.; Salimon, J.; Derawi, D.; Bahadi, M.; Yusop, M.R. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation. AIP Conf. Proc. 2016, 1784. [Google Scholar] [CrossRef]
- Ketenoğlu, O.; Erdoğdu, F.; Tekin, A. Multi-objective Optimization of Molecular Distillation Conditions for Oleic Acid from a Rich-in-Fatty Acid Model Mixture. J. Oleo Sci. 2017, 67, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, D.; Qi, B.; Rokayya, S.; Ma, W.; Liang, J.; Sui, X.; Zhang, Y.; Jiang, L. Heating quality and stability of aqueous enzymatic extraction of fatty acid-balanced oil in comparison with other blended oils. J. Chem. 2014, 2090–9063. [Google Scholar] [CrossRef]
AV (mgKOH/g) | PV (meqO2/kg) | p-Anisidine value | Lovibond Color | Tocopherol (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Yellow | Red | α | β | γ | δ | Total | ||||
EAE | 0.57 ± 0.02 a | 2.98 ± 0.04 a | 5.20 ± 0.1 a | 5.20 ± 0.6 b | 0.40 ± 0.20 b | 147.30 ± 14.10 a | 63.50 ± 1.90 a | 703.20 ± 24.60 a | 316.90 ± 19.70 a | 1230.90 ± 13.50 a |
AD | 0.27 ± 0.04 b | 3.13 ± 0.11 a | 5.02 ± 0.02 b | 20.70 ± 0.23 a | 14.50 ± 0.13 a | 72.92 ± 1.05 b | 7.50 ± 2.76 b | 189.06 ± 3.04 b | 32.31 ± 3.04 b | 301.79 ± 1.25 b |
Evaporation Temperature (°C) | Lovibond Color | Scraper Speed (rpm) | Lovibond Color | Flow Feed Rate (mL/min) | Lovibond Color | |||
---|---|---|---|---|---|---|---|---|
Yellow | Red | Yellow | Red | Yellow | Red | |||
120 | 6.1 ± 0.2 e | 0.4 ± 0.2 e | 180 | 7.7 ± 0.1 d | 1.2 ± 0.1 e | 1 | 19.4 ± 0.2 a | 7.3 ± 0.1 a |
140 | 7.4 ± 0.3 d | 2.6 ± 0.3 d | 200 | 8.3 ± 0.2 d | 3.8 ± 0.4 d | 2 | 12.9 ± 0.7 b | 6.4 ± 0.3 b |
160 | 9.3 ± 0.1 c | 5.2 ± 0.5 c | 220 | 9.3 ± 0.2 c | 5.2 ± 0.6 c | 3 | 9.3 ± 0.1 c | 5.2 ± 0.5 c |
180 | 12.7 ± 0.4 b | 7.7 ± 0.3 b | 240 | 13.4 ± 0.5 b | 7.8 ± 0.1 a | 4 | 7.4 ± 0.2 d | 4.1 ± 0.1 d |
200 | 24.4 ± 0.6 a | 8.4 ± 0.4 a | 260 | 17.7 ± 0.6 a | 6.9 ± 0.2 b | 5 | 6.3 ± 0.5 e | 3.5 ± 0.2 e |
Compositions (%) | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | |
---|---|---|---|---|---|---|---|---|
Evaporation temperature (°C) | 120 | 0.077 ± 0.004 a | 11.38 ± 0.03 a | 0.082 ± 0.001 a | 3.98 ± 0.06 a | 21.79 ± 0.03 ab | 52.09 ± 0.012 c | 8.22 ± 0.06 b |
140 | 0.074 ± 0.002 a | 11.32 ± 0.01 b | 0.072 ± 0.007 b | 3.92 ± 0.02 a | 21.65 ± 0.01 c | 52.24 ± 0.03 a | 8.31 ± 0.03 a | |
160 | 0.074 ± 0.006 a | 11.34 ± 0.04 ab | 0.077 ± 0.004 ab | 3.97 ± 0.01 a | 21.71 ± 0.04 b | 52.15 ± 0.02 b | 8.29 ± 0.01 ab | |
180 | 0.074 ± 0.005 a | 11.37 ± 0.01 a | 0.077 ± 0.002 ab | 3.98 ± 0.05 a | 21.68 ± 0.09 c | 52.13 ± 0.03 b | 8.27 ± 0.02 ab | |
200 | 0.074 ± 0.001 a | 11.34 ± 0.02 ab | 0.081 ± 0.003 a | 4.00 ± 0.07 a | 21.81 ± 0.05 a | 52.02 ± 0.006 d | 8.24 ± 0.04 ab | |
Scraper speed (rpm) | 180 | 0.078 ± 0.001 a | 11.45 ± 0.05 a | 0.075 ± 0.001 a | 4.01 ± 0.008 a | 21.57 ± 0.02 c | 52.04 ± 0.11 a | 8.36 ± 0.05 a |
200 | 0.075 ± 0.002 a | 11.33 ± 0.02 b | 0.079 ± 0.003 a | 4.00 ± 0.05 a | 21.64 ± 0.01 b | 52.12 ± 0.3 a | 8.31 ± 0.01 a | |
220 | 0.074 ± 0.001 a | 11.34 ± 0.04 b | 0.077 ± 0.002 a | 3.96 ± 0.01 a | 21.71 ± 0.03 a | 52.15 ± 0.01 a | 8.29 ± 0.07 a | |
240 | 0.075 ± 0.003 a | 11.34 ± 0.01 b | 0.077 ± 0.001 a | 3.98 ± 0.05 a | 21.71 ± 0.01 a | 52.14 ± 0.03 a | 8.30 ± 0.05 a | |
260 | 0.074 ± 0.004 a | 11.37 ± 0.03 b | 0.078 ± 0.004 a | 3.98 ± 0.01 a | 21.70 ± 0.04 a | 52.07 ± 0.08 a | 8.31 ± 0.02 a | |
Feed flow rate (mL/min) | 1 | 0.072 ± 0.002 b | 11.25 ± 0.02 c | 0.081 ± 0.002 a | 3.95 ± 0.01 ab | 21.70 ± 0.07 a | 52.25 ± 0.05 a | 8.33 ± 0.02 b |
2 | 0.074 ± 0.002 ab | 11.36 ± 0.05 b | 0.082 ± 0.003 a | 3.97 ± 0.03 a | 21.72 ± 0.03 a | 52.09 ± 0.02 c | 8.33 ± 0.03 b | |
3 | 0.074 ± 0.006 ab | 11.34 ± 0.02 b | 0.077 ± 0.003 a | 3.97 ± 0.01 a | 21.71 ± 0.01 a | 52.15 ± 0.01 b | 8.29 ± 0.01 b | |
4 | 0.074 ± 0.001 ab | 11.36 ± 0.01 b | 0.078 ± 0.001 a | 3.93 ± 0.06 ab | 21.73 ± 0.05 a | 52.14 ± 0.03 bc | 8.31 ± 0.04 b | |
5 | 0.080 ± 0.003 a | 11.49 ± 0.04 a | 0.079 ± 0.002 a | 3.90 ± 0.02 b | 21.44 ± 0.02 b | 52.01 ± 0.02 d | 8.51 ± 0.01 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Zhang, S.; Qi, B.-K.; Li, H.; Xie, F.-Y.; Li, Y. Molecular Distillation-Induced Deacidification of Soybean Oil Isolated by Enzyme-Assisted Aqueous Extraction: Effect of Distillation Parameters. Appl. Sci. 2019, 9, 2123. https://doi.org/10.3390/app9102123
Han L, Zhang S, Qi B-K, Li H, Xie F-Y, Li Y. Molecular Distillation-Induced Deacidification of Soybean Oil Isolated by Enzyme-Assisted Aqueous Extraction: Effect of Distillation Parameters. Applied Sciences. 2019; 9(10):2123. https://doi.org/10.3390/app9102123
Chicago/Turabian StyleHan, Lu, Shuang Zhang, Bao-Kun Qi, Hong Li, Feng-Ying Xie, and Yang Li. 2019. "Molecular Distillation-Induced Deacidification of Soybean Oil Isolated by Enzyme-Assisted Aqueous Extraction: Effect of Distillation Parameters" Applied Sciences 9, no. 10: 2123. https://doi.org/10.3390/app9102123
APA StyleHan, L., Zhang, S., Qi, B.-K., Li, H., Xie, F.-Y., & Li, Y. (2019). Molecular Distillation-Induced Deacidification of Soybean Oil Isolated by Enzyme-Assisted Aqueous Extraction: Effect of Distillation Parameters. Applied Sciences, 9(10), 2123. https://doi.org/10.3390/app9102123