Vapor Compounds Released from Nicotine-Free Inhalators as a Smoking-Cessation Aid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Vapor Samples Released from Nicotine-Free Inhalators
2.2. Analysis of Carbonyl Compounds in Vapor Samples
2.3. Analysis of Volatile Organic Compounds in Vapor Samples
2.4. Quantification Method Based on the Carbon Number Approach Without Standards
3. Results
3.1. Method Validation of GC-MS and HPLC
3.2. Concentration of VOCs and Aroma Compounds/Data of Toxic Guidelines
4. Discussion
4.1. Volatile Compounds of the Nicotine-Free Inhalator
4.2. Toxicity Guidelines for Inhalation Exposure
4.3. Safety of the Nicotine-Free Inhalator
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO, Tobacco News, 2018. Available online: http://www.who.int/mediacentre/factsheets/fs339/en/ (accessed on 10 January 2019).
- Cho, H.J. The status and future challenges of tobacco control policy in Korea. J. Prev. Med. Public Health 2014, 47, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.E.; Behm, F.M. Inhalation of vapor from black pepper extract reduces smoking withdrawal symptoms. Drug Alcohol Depend. 1994, 34, 225–229. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, M.S.; Ha, H.S. An Analysis of the Effect of Smoking Cessation by Aroma. J. Korean Soc. Jungshin Sci. 2009, 13, 15–30. [Google Scholar]
- Harmless Products Company, Harmless Cigarette, 2018. Available online: https://harmlesscigarette.com/ (accessed on 10 January 2019).
- Earth solutions, Aromatherapy Inhaler—Smoke Less Essential Oil Inhaler, 2019. Aromatherapy Products. Available online: https://www.earthsolutions.com/product/scent-inhaler-smoke-less/ (accessed on 10 January 2019).
- Robbins, W. Essential Oils and Aromatherapy Tips to Help Quit Smoking, 2019. Available online: https://www.aromaweb.com/articles/aromatherapyquitsmoking.asp (accessed on 10 January 2019).
- Caponnetto, P.; Cibella, F.; Mancuso, S.; Campagna, D.; Arcidiacono, G.; Polosa, R. Effect of a nicotine-free inhalator as part of a smoking-cessation programme. Eur. Respir. J. 2011, 38, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Cordell, B.; Buckle, J. The effects of aromatherapy on nicotine craving on a U.S. campus: a small comparison study. J. Altern. Complement. Med. 2013, 19, 709–713. [Google Scholar] [CrossRef] [PubMed]
- McRobbie, H.; Bullen, C.; Hartmann-Boyce, J.; Hajek, P. Electronic cigarettes for smoking cessation and reduction. Cochrane Database Syst. Rev. 2014, 12. [Google Scholar] [CrossRef]
- Morice, A.H.; Marshall, A.E.; Higgins, K.S.; Grattan, T.J. Effect of inhaled menthol on citric acid induced cough in normal subjects. Thorax 1994, 49, 1024–1026. [Google Scholar] [CrossRef]
- NIFDS. Cigarette Analytical Method (II) Analytical Method of Electronic Cigarette Vapor; 11-1471057-000131-01; NIFDS: Chungcheongbuk-do, Korea, 2016.
- Dai, J.; Kim, K.H.; Szulejko, J.E.; Jo, S.H. A simple method for the parallel quantification of nicotine and major solvent components in electronic cigarette liquids and vaped aerosols. Microchem. J. 2017, 133, 237–245. [Google Scholar] [CrossRef]
- Shin, J.W.; Jo, S.H.; Kim, K.H.; Song, H.N.; Kang, C.H.; Bolan, N.; Hong, J. Are glass fiber particles released during the use of electronic cigarettes? Development of a semi-quantitative approach to detect glass particle emission due to vaping. Environ. Res. 2018, 165, 267–273. [Google Scholar] [CrossRef]
- Jo, S.H.; Kim, K.H. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. J. Chromatogr. A 2016, 1429, 369–373. [Google Scholar] [CrossRef]
- Szulejko, J.E.; Kim, Y.H.; Kim, K.H. Method to predict gas chromatographic response factors for the trace-level analysis of volatile organic compounds based on the effective carbon number concept. J. Sep. Sci. 2013, 36, 3356–3365. [Google Scholar] [CrossRef] [PubMed]
- Szulejko, J.E.; Kim, K.H. Re-evaluation of effective carbon number (ECN) approach to predict response factors of ‘compounds lacking authentic standards or surrogates’ (CLASS) by thermal desorption analysis with GC-MS. Anal. Chim. Acta 2014, 851, 14–22. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Khaef, S.; Yari, A.; Nikeafshar, S.; Fathi, M.; Ghambari, S. Chemical composition analysis of the essential oil of Mentha piperita L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods. J. Anal. Sci. Technol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Baslas, R.K.; Saxena, S. Chromatographic analysis of dementholised essential oil of Mentha piperita. Indian J. Phys. Nat. Sci. A 1984, 4, 32. [Google Scholar]
- EPA, Piperitone (89-81-6 | DTXSID7052604). Available online: https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID7052604#toxicity-values (accessed on 10 January 2019).
- TOXNET, Myrcene (CASRN: 123-35-3), 2012. Available online: https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+1258 (accessed on 10 January 2019).
- Drijfhout, F.P.; Morgan, E.D. Terrestrial natural products as antifeedants. In Comprehensive Natural Products II; Mander, L., Liu, H.W., Eds.; Elseiver: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Alarie, Y. Dose-response analysis in animal studies: prediction of human responses. Environ. Health Perspect. 1981, 42, 9–13. [Google Scholar] [CrossRef] [PubMed]
- DGUV, DNEL List of the DGUV, 2018. Available online: https://dnel-en.itrust.de/ (accessed on 10 January 2019).
- Wolf, S. Stability testing of mint oils through gas chromatography analysis. Honor. Theses 2007, 733. Available online: https://scholarworks.wmich.edu/honors_theses/733/ (accessed on 10 January 2019).
- Ott, L.; Bicker, M.; Vogel, H. Catalytic dehydration of glycerol in sub-and supercritical water: a new chemical process for acrolein production. Green Chem. 2006, 8, 214–220. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Alarie, Y. Sensory irritation, pulmonary irritation, and respiratory stimulation by airborne benzene and alkylbenzenes: Prediction of safe industrial exposure levels and correlation with their thermodynamic properties. Toxicol. Appl. Pharmacol. 1982, 30, 459–477. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Wolkoff, P.; Alarie, Y. Sensory irritation: risk assessment approaches. Regul. Toxicol. Pharmacol. 2007, 48, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, Y.; Alexeeff, G.V.; Broadwin, R.; Salmon, A.G. Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public. Environ. Health Perspect. 2007, 115, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Fiala, F. Requirements for Substances Formed or Released During the Evaporation of E-Liquids Used in Electronic Cigarettes; The Austrian Ministry of Labour Social Affairs and Consumer Protection, The Consumer Council at the Austrian Standards Institute: Vienna, Austria, 2017.
- NIOSH. NIOSH Pocket Guide to Chemical Hazards; DHHS (NIOSH) Publication No. 2005-149; Department of Health and Human Services: Cincinnati, OH, USA, 2007. Available online: http://www.cdc.gov/niosh (accessed on 10 January 2019).
- Loolaie, M.; Moasefi, N.; Rasouli, H.; Adibi, H. Peppermint and Its Functionality: A Review. Arch. Clin. Microbiol. 2017, 8, 54. [Google Scholar] [CrossRef]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, A. Therapeutic uses of peppermint-a review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Amended Safety Assessment of Mentha Piperita (Peppermint)-Derived Ingredients as Used in Cosmetics; Cosmetic Ingredient Review: Washington, DC, USA, 2018. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Health Sciences: New York, NY, USA, 2013. [Google Scholar]
- Dwivedi, A.M. Experimental Studies on Acute Health Effects of Acrolein and Other Aldehydes; Institute of Environmental Medicine: Solna, Sverig, 2017; Available online: https://pdfs.semanticscholar.org/8101/e65d334ab55126016d38f7f5ac013c1f8d94.pdf (accessed on 21 May 2019).
- ATSDR. Toxicological Profile for Acrolein, U.S. Department of Health and Human Services; ATSDR: Bethesda, MD, USA, 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp124-c3.pdf (accessed on 21 May 2019).
No | Compound | Chemical Abstracts Service (CAS) Number | Vapor Samples (n = 4) Mean Conc. (ppm) | RD50 1 (ppm) | Sensory Irritation 2 (ppm) | DNEL 3 (ppm) |
---|---|---|---|---|---|---|
1 | (+)-α-Pinene | 7785-70-8 | 0.73 ± 0.19 | 1053 | 31.6 | 0.69 |
2 | (−)-β-Pinene | 18172-67-3 | 0.90 ± 0.19 | 4663 | 140 | 1.04 |
3 | β-Myrcene | 123-35-3 | 0.74 ± 0.14 | n.d. 4 | - | n.d. |
4 | (+)-Limonene | 138-86-3 | 3.39 ± 0.47 | 1076 | 32.3 | 12.14 |
5 | 3-Octanol | 589-98-0 | 1.28 ± 0.14 | 256 | 7.68 | n.d. |
6 | (+)-Isomenthone | 491-07-6 | 7.09 ± 0.84 | n.d. | - | 6.35 |
7 | (−)-Isomenthone | 1196-31-2 | 3.84 ± 0.31 | n.d. | - | 6.35 |
8 | Menthyl acetate | 89-48-5 | 0.74 ± 0.04 | n.d. | - | 4.20 |
9 | Neomenthol | 491-01-0 | 1.32 ± 0.08 | n.d. | - | 10.49 |
10 | (−)-Menthol | 1490-04-6 | 5.49 ± 0.31 | 45 | 1.35 | 20.95 |
11 | Piperitone | 89-81-6 | 0.26 ± 0.01 | n.d. | - | n.d. |
12 | m-Eugenol | 501-19-9 | 0.25 ± 0.04 | n.d. | - | 3.20 |
No | Compound | CAS Number | Vapor Samples (n = 4) Mean Conc. (ppm) | RD50 1 (ppm) | Sensory Irritation 2 (ppm) | DNEL 3 (ppm) | OSHA PEL TWA 4 (ppm) |
---|---|---|---|---|---|---|---|
1 | Formaldehyde | 50-00-0 | 0.06 5 | 4 | 0.12 | 7.43 | 0.75 |
2 | Acetaldehyde | 75-07-0 | 0.08 5 | 2845 | 85.4 | n.d. | 200 |
3 | Propionaldehyde | 123-38-6 | 0.05 5 | 2078 | 62.3 | 2.60 | n.d. |
4 | Butyraldehyde | 123-72-8 | 0.08 5 | 1015 | 30.5 | n.d. | n.d. |
5 | Isovaleraldehyde | 590-86-3 | 0.07 5 | 757 | 22.7 | n.d. | n.d. |
6 | Valeraldehyde | 110-62-3 | 0.10 5 | 1121 | 33.6 | n.d. | n.d. |
7 | Acrolein | 107-02-8 | 0.06 5 | 1.6 | 0.05 | 0.09 | 0.1 |
8 | Acetone | 67-64-1 | 0.06 5 | 23,480 | 704 | 517 | 1000 |
9 | Crotonaldehyde | 123-73-9 | 0.08 5 | 3.53 | 0.10 | 0.11 | 2 |
10 | Benzaldehyde | 100-52-7 | 0.11 5 | 333 | 10.0 | 2.29 | n.d. |
11 | Methyl ethyl ketone | 78-93-3 | 0.0280 ± 0.0068 | 9000 | 270 | 206 | 200 |
12 | Methyl isobutyl ketone | 108-10-1 | 0.0001 5 | 3195 | 95.9 | 20.6 | 100 |
13 | Butyl acetate | 123-86-4 | 0.0001 5 | 730 | 21.9 | 64.1 | 150 |
14 | Isobutyl alcohol | 78-83-1 | 0.0001 5 | 1818 | 54.5 | n.d. | 100 |
15 | Benzene | 71-43-2 | 0.0012 5 | n.d. | - | n.d. | 1 |
16 | Toluene | 108-88-3 | 0.0609 ± 0.0192 | 3373 | 101 | 51.7 | 200 |
17 | p-Xylene | 106-42-3 | 0.0043 ± 0.0011 | 1326 | 39.8 | 51.6 | 100 |
18 | m-Xylene | 108-38-3 | 0.0031 ± 0.0010 | 1360 | 40.8 | 51.6 | 100 |
19 | o-Xylene | 95-47-6 | 0.0088 ± 0.0060 | 1467 | 44.0 | 51.6 | 100 |
20 | Styrene | 100-42-5 | 0.003 5 | 156.3 | 4.70 | 23.8 | 100 |
21 | Dimethyl disulfide | 624-92-0 | 0.0002 5 | n.d. | - | 0.57 | n.d. |
22 | Trimethylamine | 75-50-3 | 0.0003 5 | 61 | 1.83 | 2.06 | n.d. |
23 | Propionic acid | 79-09-4 | 0.0005 5 | 386 | 11.6 | 24.4 | n.d. |
24 | n-Butyric acid | 107-92-6 | 0.0003 5 | 285 | 8.55 | 10.4 | n.d. |
25 | i-Butyric acid | 79-31-2 | 0.0001 5 | n.d. | - | 51.8 | n.d. |
26 | Hexanoic acid | 142-62-1 | 0.0016 ± 0.0002 | n.d. | - | 3.76 | n.d. |
27 | Heptanoic acid | 111-14-8 | 0.0001 5 | n.d. | - | 4.03 | n.d. |
28 | Phenol | 108-95-2 | 0.0005 5 | 166 | 4.98 | 2.11 | 5 |
29 | m-Cresol | 108-39-4 | 0.0006 ± 0.0002 | n.d. | - | 0.80 | n.d. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, H.-S.; Han, J.-Y.; Koren, G.; Jo, S.-H.; Kim, K.-H. Vapor Compounds Released from Nicotine-Free Inhalators as a Smoking-Cessation Aid. Appl. Sci. 2019, 9, 2232. https://doi.org/10.3390/app9112232
Kwak H-S, Han J-Y, Koren G, Jo S-H, Kim K-H. Vapor Compounds Released from Nicotine-Free Inhalators as a Smoking-Cessation Aid. Applied Sciences. 2019; 9(11):2232. https://doi.org/10.3390/app9112232
Chicago/Turabian StyleKwak, Ho-Seok, Jung-Yeol Han, Gideon Koren, Sang-Hee Jo, and Ki-Hyun Kim. 2019. "Vapor Compounds Released from Nicotine-Free Inhalators as a Smoking-Cessation Aid" Applied Sciences 9, no. 11: 2232. https://doi.org/10.3390/app9112232
APA StyleKwak, H.-S., Han, J.-Y., Koren, G., Jo, S.-H., & Kim, K.-H. (2019). Vapor Compounds Released from Nicotine-Free Inhalators as a Smoking-Cessation Aid. Applied Sciences, 9(11), 2232. https://doi.org/10.3390/app9112232