Study of 2,4-D Spectral Characteristics and Its Detection in Zizania Latifolia Using Terahertz Time-Domain Spectroscopy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Sample Preparation
2.3. Spectral Acquisition
2.4. Theoretical Density Functional Theory Calculations
3. Results and Discussion
3.1. Experimental Terahertz Spectra of 2,4-D
3.2. Theoretical Calculation and Analysis
3.3. Quantitative Analysis of 2,4-D in Zizania Latifolia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, K.; Wu, J.Q.; Jiang, L.L.; Shen, L.Z.; Li, J.Y.; He, Z.H.; Wei, P.; Lv, Z.; He, M.F. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 2017, 171, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Song, Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef]
- Salman, J.M.; Hameed, B.H. Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 2010, 256, 129–135. [Google Scholar] [CrossRef]
- Itoh, K.; Kinoshita, M.; Morishita, S.; Chida, M.; Suyama, K. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils. Fems Microbiol. Ecol. 2013, 84, 124–132. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Zhang, L.; Zhao, Y.; Yan, X.; Li, S.P.; Gu, T.; Jiang, J.D. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr. Microbiol. 2017, 74, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Quan, X.C.; Yang, Z.F.; Li, A.J. Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation. Chem. Eng. J. 2012, 181–182, 144–151. [Google Scholar] [CrossRef]
- Salman, J.M.; Njoku, V.O.; Hameed, B.H. Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem. Eng. J. 2011, 174, 33–40. [Google Scholar] [CrossRef]
- Rosa, P.D.L.; Barnett, J.B.; Schafer, R. Characterization of thymic atrophy and the mechanism of thymocyte depletion after in vivo exposure to a mixture of herbicides. J. Toxicol. Environ. Health Part A 2005, 68, 81–98. [Google Scholar] [CrossRef]
- Holland, N.T.; Duramad, P.; Rothman, N.; Figgs, L.W.; Blair, A.; Hubbard, A.; Smith, M.T. Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2,4-dichlorophenoxyacetic acid in vitro and in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002, 521, 165–178. [Google Scholar] [CrossRef]
- Codex Alimentarius. FAO-WHO. Available online: http://www.fao.org/fao-who-codexalimentarius/en/ (accessed on 11 April 2019).
- Chen, X.; Zhang, H.; Wan, Y.; Chen, X.; Li, Y. Determination of 2,4-Dichlorophenoxyacetic acid (2,4-D) in rat serum for pharmacokinetic studies with a simple HPLC method. PLoS ONE 2018, 13, e0191149. [Google Scholar] [CrossRef]
- Geng, Z.M.; Chen, M.; Wang, R.; Zheng, Q. Determination of 2,4-dichlorophenoxyacetic Acid Residue in Orange Using High Performance Liquid Chromatography. Jiangsu J. Agric. Sci. 2007, 23, 67–70. [Google Scholar]
- González, A.J.; Gallego, A.; Gemini, V.L.; Papalia, M.; Radice, M.; Gutkind, G.; Planes, E.; Korol, S.E. Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int. Biodeterior. Biodegrad. 2012, 66, 8–13. [Google Scholar] [CrossRef]
- Vdovenko, M.M.; Stepanova, A.S.; Eremin, S.A.; Van, C.N.; Uskova, N.A.; Yu, S.I. Quantification of 2,4-dichlorophenoxyacetic acid in oranges and mandarins by chemiluminescent ELISA. Food Chem. 2013, 141, 865–868. [Google Scholar] [CrossRef]
- Jin-Liang, J.; Han-Hong, X.; Gui-Rong, Z.; Zhun, H.; Bo-Qing, X. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid. Nanotechnology 2012, 23, 495710. [Google Scholar]
- Wells, R.J.; Hook, J.M.; Al-Deen, T.S.; Hibbert, D.B. Quantitative nuclear magnetic resonance (QNMR) spectroscopy for assessing the purity of technical grade agrochemicals: 2,4-dichlorophenoxyacetic acid (2,4-D) and sodium 2,2-dichloropropionate (Dalapon sodium). J. Agric. Food Chem. 2002, 50, 3366–3374. [Google Scholar] [CrossRef]
- Trivedi, N.S.; Mandavgane, S.A.; Kulkarni, B.D. Mustard plant ash: A source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ. Sci. Pollut. Res. 2016, 23, 1–13. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Li, L. PLS model investigation of thiabendazole based on THz spectrum. J. Quant. Spectrosc. Radiat. Transf. 2013, 117, 7–14. [Google Scholar] [CrossRef]
- Haddad, J.E.; Miollis, F.D.; Sleiman, J.B.; Canioni, L.; Mounaix, P.; Bousquet, B.; Chem, A. Chemometrics applied to quantitative analysis of ternary mixtures by terahertz spectroscopy. Anal. Chem. 2014, 86, 4927–4933. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, S.; Bao, R.; Ge, L.; Zhao, K. Qualitative identification of crude oils from different oil fields using terahertz time-domain spectroscopy. Fuel 2015, 143, 189–193. [Google Scholar] [CrossRef]
- Mccrindle, I.J.H.; Grant, J.; Drysdale, T.D.; Cumming, D.R.S. Multi-Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber. Adv. Opt. Mater. 2014, 2, 149–153. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Qu, F.; Lei, L.; Yong, H.; Nie, P.; Cai, C.; Tao, D.; Yi, P.; Yu, T.; Luo, S. Terahertz Multivariate Spectral Analysis and Molecular Dynamics Simulations of Three Pyrethroid Pesticides. J. Infrared Millim. Terahertz Waves 2018, 39, 1148–1161. [Google Scholar] [CrossRef]
- Baek, S.H.; Ju, H.K.; Hwang, Y.H.; Kang, M.O.; Kwak, K.; Chun, H.S. Detection of Methomyl, a Carbamate Insecticide, in Food Matrices Using Terahertz Time-Domain Spectroscopy. J. Infrared Millim. Terahertz Waves 2016, 37, 486–497. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, H. Qualitative and Quantitative Detection of Pesticides With Terahertz Time-Domain Spectroscopy. IEEE Trans. Microw. Theory Tech. 2010, 58, 2064–2070. [Google Scholar]
- Shen, J.; Wang, G.; Jiang, D.; Liang, L.; Xu, X. Terahertz spectroscopic investigations of caffeine and 3-acetylmorphine. Opt. Int. J. Light Electron Opt. 2010, 121, 1712–1716. [Google Scholar] [CrossRef]
- Albert, R.S.; Gerard, S.; Regina, G.; Eva, R.; José-Antonio, G.R.; Massimo, C.; Javier, T. Assessment of terahertz spectroscopy to detect antibiotic residues in food and feed matrices. Analyst 2011, 136, 1733–1738. [Google Scholar]
- Emel’Yanova, N.; Krivenko, A.; Manzhos, R.; Bozhenko, K.; Aldoshin, S. Comparison of pure and hybrid DFT functionals for geometry optimization and calculation of redox potentials for iron nitrosyl complexes with “μ-SCN” bridging ligands. Theor. Chem. Acc. 2013, 132, 1316–1323. [Google Scholar] [CrossRef]
- Bechstedt, F. Density Functional Theory. Oyobuturi 2015, 181, 39–59. [Google Scholar]
- Marques, M.A.L.; Oliveira, M.J.T.; Burnus, T. LIBXC: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 2012, 183, 2272–2281. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Pellizzeri, S.; Delaney, S.P.; Korter, T.M.; Zubieta, J. Using solid-state density functional theory and terahertz spectroscopy to spectroscopically distinguish the various hydrohalide salts of 5-(4-pyridyl) tetrazole. J. Mol. Struct. 2013, 105, 27–34. [Google Scholar] [CrossRef]
- Qu, F.; Lin, L.; Cai, C.; Dong, T.; He, Y.; Nie, P. Molecular Characterization and Theoretical Calculation of Plant Growth Regulators Based on Terahertz Time-Domain Spectroscopy. Appl. Sci. 2018, 8, 420. [Google Scholar] [CrossRef]
- Garet, F.; Hofman, M.; Meilhan, J.; Simoens, F.; Coutaz, J.L. Evidence of Mie scattering at terahertz frequencies in powder materials. Appl. Phys. Lett. 2014, 105, 031106-1–031106-4. [Google Scholar] [CrossRef]
- Neu, J.; Nikonow, H.; Schmuttenmaer, C.A. Terahertz Spectroscopy and Density Functional Theory Calculations of dl-Norleucine and dl-Methionine. J. Phys. Chem. A 2018, 122, 5978–5982. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Sengupta, A.; Barat, R.B.; Gary, D.E.; Federici, J.F.; Chen, M.; Tanner, D.B. Effects of Scattering on THz Spectra of Granular Solids. Int. J. Infrared Millim. Waves 2007, 28, 969–978. [Google Scholar] [CrossRef]
Experiment | B3LYP/ 6-31G | B3LYP/ 6-31G(d, p) | B3LYP/ 6-31G++(d, p) | Assignment |
---|---|---|---|---|
1.36 | 1.32 | 1.37 | 1.36 | υring+δ(3C-12O-13C)oop |
1.60 | 1.55 | 1.58 | 1.57 | υring+δ(13C-14/15H)oop+δ(2C-11CL)oop |
- | 1.92 | 1.94 | 1.93 | υ(6C-18CL)ip+υ(2C-11CL)ip+υ(13C-12O)ip |
2.38 | 2.59 | 2.64 | 2.56 | υ(3C-12O-13C)ip+υ(6C-10CL)ip |
RMSD | 0.13 | 0.15 | 0.11 | - |
Actual Concentration (%) | Predicted Concentration (%) | Recovery (%) |
---|---|---|
17 | 16.40 | 96.47 |
23 | 21.46 | 93.29 |
27 | 25.72 | 95.26 |
33 | 32.59 | 98.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, P.; Cai, C.; Qu, F.; Lin, L.; Dong, T.; He, Y. Study of 2,4-D Spectral Characteristics and Its Detection in Zizania Latifolia Using Terahertz Time-Domain Spectroscopy. Appl. Sci. 2019, 9, 2248. https://doi.org/10.3390/app9112248
Nie P, Cai C, Qu F, Lin L, Dong T, He Y. Study of 2,4-D Spectral Characteristics and Its Detection in Zizania Latifolia Using Terahertz Time-Domain Spectroscopy. Applied Sciences. 2019; 9(11):2248. https://doi.org/10.3390/app9112248
Chicago/Turabian StyleNie, Pengcheng, Chengyong Cai, Fangfang Qu, Lei Lin, Tao Dong, and Yong He. 2019. "Study of 2,4-D Spectral Characteristics and Its Detection in Zizania Latifolia Using Terahertz Time-Domain Spectroscopy" Applied Sciences 9, no. 11: 2248. https://doi.org/10.3390/app9112248
APA StyleNie, P., Cai, C., Qu, F., Lin, L., Dong, T., & He, Y. (2019). Study of 2,4-D Spectral Characteristics and Its Detection in Zizania Latifolia Using Terahertz Time-Domain Spectroscopy. Applied Sciences, 9(11), 2248. https://doi.org/10.3390/app9112248