Special Issue on Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing
1. Introduction
- (1)
- Application of machine learning techniques combined with GIS;
- (2)
- Application of machine learning techniques to remote sensing;
- (3)
- Application of machine learning techniques to Global Positioning System (GPS);
- (4)
- Spatial analysis and geocomputation based on machine learning techniques;
- (5)
- Spatial prediction using machine learning techniques;
- (6)
- Data processing of geoinformation using machine learning techniques;
- (7)
- Comparison analysis among several machine learning techniques applied to GIS and RS;
- (8)
- Application of machine learning techniques on geosciences, environments, natural hazards, and natural resources as case studies.
2. Machine Learning Techniques and Their Applications
Funding
Acknowledgments
References
- Truong, X.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, X.; Do, T.; Tien Bui, D.; Lee, S. Enhancing Prediction Performance of Landslide Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic Model Tree. Appl. Sci. 2018, 8, 1046. [Google Scholar] [CrossRef]
- Seo, D.; Kim, Y.; Eo, Y.; Park, W. Learning-Based Colorization of Grayscale Aerial Images Using Random Forest Regression. Appl. Sci. 2018, 8, 1269. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Pourghasemi, H.; Rezaei, K.; Kerle, N. Spatial Modelling of Gully Erosion Using GIS and R Programing: A Comparison among Three Data Mining Algorithms. Appl. Sci. 2018, 8, 1369. [Google Scholar] [CrossRef]
- Deng, F.; Pu, S. Single-Class Data Descriptors for Mapping Panax notoginseng through P-Learning. Appl. Sci. 2018, 8, 1448. [Google Scholar] [CrossRef]
- Wiratama, W.; Lee, J.; Park, S.; Sim, D. Dual-Dense Convolution Network for Change Detection of High-Resolution Panchromatic Imagery. Appl. Sci. 2018, 8, 1785. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, S.; Yang, X.; Li, F.; Yue, M.; Han, Y.; Zhao, H.; Zhang, Y.; Fan, K. Convolutional Neural Network-Based Remote Sensing Images Segmentation Method for Extracting Winter Wheat Spatial Distribution. Appl. Sci. 2018, 8, 1981. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yu, H.; Cao, X.; Ge, Y. A New Weighting Approach with Application to Ionospheric Delay Constraint for GPS/GALILEO Real-Time Precise Point Positioning. Appl. Sci. 2018, 8, 2537. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Han, J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Appl. Sci. 2019, 9, 171. [Google Scholar] [CrossRef]
- Azeez, O.; Pradhan, B.; Shafri, H.; Shukla, N.; Lee, C.; Rizeei, H. Modeling of CO Emissions from Traffic Vehicles Using Artificial Neural Networks. Appl. Sci. 2019, 9, 313. [Google Scholar] [CrossRef]
- Kwak, G.; Park, N. Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. Appl. Sci. 2019, 9, 643. [Google Scholar] [CrossRef]
- Park, S.; Kim, J. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree Models, and a Comparison of Their Performance. Appl. Sci. 2019, 9, 942. [Google Scholar] [CrossRef]
- Li, Y.; Tong, G.; Du, X.; Yang, X.; Zhang, J.; Yang, L. A Single Point-Based Multilevel Features Fusion and Pyramid Neighborhood Optimization Method for ALS Point Cloud Classification. Appl. Sci. 2019, 9, 951. [Google Scholar] [CrossRef]
- Choung, Y.; Kim, J. Study of the Relationship between Urban Expansion and PM10 Concentration Using Multi-Temporal Spatial Datasets and the Machine Learning Technique: Case Study for Daegu, South Korea. Appl. Sci. 2019, 9, 1098. [Google Scholar] [CrossRef]
- Wang, E.; Li, Y.; Nie, Z.; Yu, J.; Liang, Z.; Zhang, X.; Yiu, S. Deep Fusion Feature Based Object Detection Method for High Resolution Optical Remote Sensing Images. Appl. Sci. 2019, 9, 1130. [Google Scholar] [CrossRef]
- Oh, H.; Syifa, M.; Lee, C.; Lee, S. Land Subsidence Susceptibility Mapping Using Bayesian, Functional, and Meta-Ensemble Machine Learning Models. Appl. Sci. 2019, 9, 1248. [Google Scholar] [CrossRef]
- Wiratama, W.; Sim, D. Fusion Network for Change Detection of High-Resolution Panchromatic Imagery. Appl. Sci. 2019, 9, 1441. [Google Scholar] [CrossRef]
- Mao, H.; Meng, J.; Ji, F.; Zhang, Q.; Fang, H. Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands. Appl. Sci. 2019, 9, 1459. [Google Scholar] [CrossRef]
- Liu, B.; Mavrin, B.; Kong, L.; Niu, D. Spatial Data Reconstruction via ADMM and Spatial Spline Regression. Appl. Sci. 2019, 9, 1733. [Google Scholar] [CrossRef]
- Utomo, D.; Chen, S.; Hsiung, P. Landslide Prediction with Model Switching. Appl. Sci. 2019, 9, 1839. [Google Scholar] [CrossRef]
- Li, J. A Critical Review of Spatial Predictive Modeling Process in Environmental Sciences with Reproducible Examples in R. Appl. Sci. 2019, 9, 2048. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Z.; Xia, T. Mapping Areal Precipitation with Fusion Data by ANN Machine Learning in Sparse Gauged Region. Appl. Sci. 2019, 9, 2294. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.-S.; Lee, S. Special Issue on Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing. Appl. Sci. 2019, 9, 2446. https://doi.org/10.3390/app9122446
Jung H-S, Lee S. Special Issue on Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing. Applied Sciences. 2019; 9(12):2446. https://doi.org/10.3390/app9122446
Chicago/Turabian StyleJung, Hyung-Sup, and Saro Lee. 2019. "Special Issue on Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing" Applied Sciences 9, no. 12: 2446. https://doi.org/10.3390/app9122446
APA StyleJung, H. -S., & Lee, S. (2019). Special Issue on Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing. Applied Sciences, 9(12), 2446. https://doi.org/10.3390/app9122446