Revealing Development Trends and Key 5G Photonic Technologies Using Patent Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Literature Review
2.1. Development of 5G
2.2. The Importance of Photonic Technology to 5G Networks
2.3. Patent Technology Network Analysis
3. Research Design
3.1. Search Strategy and Data Source
3.2. Key Technology Analysis
3.2.1. Closeness Centrality
3.2.2. Betweenness Centrality
3.2.3. Structural Holes
4. Empirical Study
4.1. Patent Search Results
4.2. Key Technology Network Analysis
4.3. Postanalysis: Changes in the Key 5G Photonic Technologies Over Time
5. Conclusions
5.1. Discussion
5.2. Limitations and Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
CPC Categories | Meaning |
G02B | Optical elements, systems, or apparatus |
G02F | Devices or arrangements, the optical operation of which is modified by changing the optical properties of the medium of the devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light, e.g., switching, gating, modulating or demodulating; techniques or procedures for the operation thereof; frequency-changing; non-linear optics; optical logic elements; optical analogue/digital converters |
H01Q | Antennas, i.e., radio aerials |
H01S | Devices using the process of light amplification by stimulated emission of radiation [laser] to amplify or generate light; devices using stimulated emission of electromagnetic radiation in wave ranges other than optical |
H04B | Transmission |
H04L | Transmission of digital information, e.g., telegraphic communication |
H04Q | Selecting |
H04W | Wireless communication networks |
References
- Zhenga, X.; Zhang, L. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511–2532. [Google Scholar] [CrossRef]
- European Union. Horizon 2020: Key Enabling Technologies (KETs), Booster for European Leadership in the Manufacturing Sector; Policy Department Economic and Scientific Policy European Parliament: Brussels, Belgium, 2014. [Google Scholar]
- Arlon, M. Cloud computing-The next frontier for silicon photonics. ECN Electron. Compon. News 2013, 57, 28–30. [Google Scholar]
- Borges, R.M.; Muniz, A.L.M.; Sodré Junior, A.C. Development and performance analysis of a photonics-assisted RF converter for 5G applications. Fiber Integr. Opt. 2017, 36, 25–37. [Google Scholar] [CrossRef]
- Overton, G. Photonics—A fundamental enabler for the Internet of Things. Laser Focus World 2018, 54, 21–25. [Google Scholar]
- Wallace, J. Laser Focus World’s top 20 photonics technology picks for 2018. Laser Focus World 2018, 54, 21–26. [Google Scholar]
- Hsieh, H.C.; Lee, C.S.; Chen, J.L. Mobile edge computing platform with container-based virtualization technology for IoT applications. Wirel. Pers. Commun. 2018, 102, 527–542. [Google Scholar] [CrossRef]
- Aazam, M.; Zeadally, S.; Harras, K.A. Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. 2018, 87, 278–289. [Google Scholar] [CrossRef]
- Goudos, S.; Dallas, P.; Chatziefthymiou, S.; Kyriazakos, S. A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wirel. Pers. Commun. 2017, 97, 1645–1675. [Google Scholar] [CrossRef]
- Gartner. Leading the IoT: Gartner Insights on How to Lead in a Connected World; Gartner: Stamford, CT, USA, 2017. [Google Scholar]
- Anwar, S.; Prasad, R. Framework for future telemedicine planning and infrastructure using 5G technology. Wirel. Pers. Commun. 2018, 100, 193–208. [Google Scholar] [CrossRef]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 2018, 100, 145–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zheng, D.; Li, P.; Tian, Y. Privacy-preserving communication and power injection over vehicle networks and 5G smart grid slice. J. Netw. Comput. Appl. 2018, 122, 50–60. [Google Scholar] [CrossRef]
- Han, S.; Ji, S.; Kang, I.; Kim, S.C.; You, C. Millimeter wave beamforming receivers using a Si-based OBFN for 5G wireless communication systems. Opt. Commun. 2019, 430, 83–97. [Google Scholar] [CrossRef]
- Noque, D.F.; Borges, R.M.; Muniz, A.L.M.; Bogoni, A.; Arismar Cerqueira, S., Jr. Thermal and dynamic range characterization of a photonics-based RF amplifier. Opt. Commun. 2018, 414, 191–194. [Google Scholar] [CrossRef]
- Roberto Sabella, E. Photonics for 5G networks. IEEE 5G Tech Focus 2018, 2, 1–7. [Google Scholar]
- Testa, F.; Giorgi, L.; Bigongiari, A.; Bianchi, A. Experimental evaluation of silicon photonics transceiver operating at 120 °C for 5G antenna array system. Electron. Lett. 2018, 54, 1391–1392. [Google Scholar] [CrossRef]
- Bogoni, A.; Potì, L.; Prati, G.; Romagnoli, M. Photonics for 5G. In 5G Italy-The Global Meeting in Rome, Rome Italy, 4–6 December 2018; Marsan, M.A., Melazzi, N.B., Buzzi, S., Eds.; CNIT: Rome, Italy, 2018; pp. 267–288. [Google Scholar]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- TechNavio. Global 5G Equipment Market 2019–2023; TechNavio: London, UK, 2018. [Google Scholar]
- DCMS. 5G Testbeds and Trials Programme; Department for Digital, Culture Media & Sport: London, UK, 2018. [Google Scholar]
- Giorgi, L.; D’Errico, A.; Presi, M.; Ciaramella, E.; Testa, F. Remote light source for silicon photonic transceivers in mobile fronthaul applications. Electron. Lett. 2015, 51, 355–356. [Google Scholar] [CrossRef]
- Jawad, S.S.; Fyath, R.S. Transmission performance of analog radio-over-fiber fronthaul for 5G mobile networks. Int. J. Netw. Commun. 2018, 8, 81–96. [Google Scholar]
- Ji, J.; Barnett, G.A.; Chu, J. Global networks of genetically modified crops technology: A patent citation network analysis. Scientometrics 2019, 118, 737–762. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, W.K.; Sohn, S.Y. Patent network analysis and quadratic assignment procedures to identify the convergence of robot technologies. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Sun, X.; Ding, K. Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents. Scientometrics 2018, 116, 1735–1748. [Google Scholar] [CrossRef]
- De Paulo, A.F.; Ribeiro, E.M.S.; Porto, G.S. Mapping countries cooperation networks in photovoltaic technology development based on patent analysis. Scientometrics 2018, 117, 667–686. [Google Scholar] [CrossRef]
- Shen, F.; Ma, T.A. Methodology to position nations’ efforts in a technology domain with a patent network analysis: Case of the electric vehicle domain. Technol. Anal. Strateg. Manag. 2018, 30, 1084–1104. [Google Scholar] [CrossRef]
- Ciaramella, L.; Martínez, C.; Ménière, Y. Tracking patent transfers in different European countries: Methods and a first application to medical technologies. Scientometrics 2017, 112, 817–850. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, W. Technology-industry networks in technology commercialization: Evidence from Korean university patents. Scientometrics 2014, 98, 1785–1810. [Google Scholar] [CrossRef]
- Seo, I.; Sonn, J.W. The persistence of inter-regional hierarchy in technology transfer networks: An analysis of Chinese patent licensing data. Growth Chang. 2019, 50, 145–163. [Google Scholar] [CrossRef]
- Kim, G.; Bae, J. A novel approach to forecast promising technology through patent analysis. Technol. Forecast. Soc. Chang. 2017, 117, 228–237. [Google Scholar] [CrossRef]
- Park, Y.; Yoon, J. Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering. Technol. Forecast. Soc. Chang. 2017, 118, 170–183. [Google Scholar] [CrossRef]
- Bass, S.D.; Kurgan, L.A. Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics 2010, 82, 217–241. [Google Scholar] [CrossRef]
- Breitzman, A.; Thomas, P. Inventor team size as a predictor of the future citation impact of patents. Scientometrics 2015, 103, 631–647. [Google Scholar] [CrossRef]
- Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34. [Google Scholar] [CrossRef]
- Csató, L. Measuring centrality by a generalization of degree. Cent. Eur. J. Oper. Res. 2017, 25, 771–790. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, S.; Jung, J.K. Evolution of technology convergence networks in Korea: Characteristics of temporal changes in R&D according to institution type. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Weng, C.S. Structural embeddedness and position: Evidences from affiliation of patent with technological classifications. Technol. Anal. Strateg. Manag. 2018, 30, 1148–1165. [Google Scholar] [CrossRef]
- Saxena, R.; Kaur, S.; Bhatnagar, V. Social centrality using network hierarchy and community structure. Data Min. Knowl. Discov. 2018, 32, 1421–1443. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S. Structural Holes; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Burt, R.S. Reinforced structural holes. Soc. Netw. 2015, 43, 149–161. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, S.L.; Wen, S.H. Measuring technological diversification: Identifying the effects of patent scale and patent scope. Scientometrics 2010, 84, 265–275. [Google Scholar] [CrossRef]
- Kay, L.; Newman, N.; Youtie, J.; Porter, A.L.; Rafols, I. Patent overlay mapping: Visualizing technological distance. J. Assoc. Inf. Sci. Technol. 2014, 65, 2432–2443. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M. What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency. Scientometrics 2007, 70, 779–810. [Google Scholar] [CrossRef]
- Koelling, T.; Rogers, J. Exploring 5G Fronthaul Network Architecture Intelligence Splits and Connectivity; Intel Corporation: Santa Clara, CA, USA, 2019. [Google Scholar]
- Guffarth, D.; Knappe, M. Patterns of learning in dynamic technological system lifecycles—What automotive managers can learn from the aerospace industry? J. Open Innov. Technol. Mark. Complex. 2019, 5, 1–15. [Google Scholar] [CrossRef]
- Yun, J.J.; Jeong, E.; Park, J. Network Analysis of Open Innovation. Sustainability 2016, 8, 729–749. [Google Scholar] [CrossRef]
- Yun, J.J.; Jeong, E.; Yang, J. Open innovation of knowledge cities. J. Open Innov. Technol. Mark. Complex. 2015, 1, 16–35. [Google Scholar] [CrossRef]
Ranking | CPC Classification Number | Frequency of Appearance | Percentage |
---|---|---|---|
1 | H04B | 19 | 25.33% |
2 | H04W | 12 | 16.00% |
3 | G02B | 8 | 10.67% |
4 | H01Q | 3 | 4.00% |
5 | H04Q | 3 | 4.00% |
Ranking | Patentee | Number of Patents | Percentage |
---|---|---|---|
1 | CommScope Technologies LLC. | 8 | 22.86% |
2 | Redwood Systems INC. | 3 | 8.57% |
3 | Allen Telecom LLC. | 3 | 8.57% |
4 | Andrew LLC. | 2 | 5.71% |
5 | Lockheed Martin Corporation | 2 | 5.71% |
CPC | Closeness Centrality | CPC | Betweenness Centrality | CPC | Reinforced Structural Holes |
---|---|---|---|---|---|
H04B | 18.000 | H04B | 112 | H04B | 0.707 |
H04W | 16.167 | G02F | 36 | H04W | 0.612 |
H01Q | 12.667 | H04W | 33.833 | H01S | 0.437 |
H04L | 12.167 | G02B | 8.833 | G02B | 0.435 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-H. Revealing Development Trends and Key 5G Photonic Technologies Using Patent Analysis. Appl. Sci. 2019, 9, 2525. https://doi.org/10.3390/app9122525
Chang S-H. Revealing Development Trends and Key 5G Photonic Technologies Using Patent Analysis. Applied Sciences. 2019; 9(12):2525. https://doi.org/10.3390/app9122525
Chicago/Turabian StyleChang, Shu-Hao. 2019. "Revealing Development Trends and Key 5G Photonic Technologies Using Patent Analysis" Applied Sciences 9, no. 12: 2525. https://doi.org/10.3390/app9122525
APA StyleChang, S.-H. (2019). Revealing Development Trends and Key 5G Photonic Technologies Using Patent Analysis. Applied Sciences, 9(12), 2525. https://doi.org/10.3390/app9122525