Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application
Abstract
:1. Introduction
Characteristics and Benefits of Supercritical Energy Conversion
2. Heat-to-Power Applications
2.1. Supercritical Steam Rankine Cycles
Various Layouts
2.2. Supercritical Organic Rankine Cycles
2.2.1. Various Layouts
2.2.2. Experimental Results
2.3. Supercritical CO2 Power Cycles
2.3.1. Transcritical CO2 Rankine Cycle
2.3.2. Various Layouts
2.3.3. Experimental Results
2.4. Supercritical CO2 Brayton Cycles
2.4.1. Various Layouts
2.4.2. Experimental Results
3. Heat-to-Heat Applications
3.1. Transcritical CO2 Heat Pump Cycles
3.1.1. Various Layouts
Expansion Machine at the Gas Cooler Exit:
Ejector for Assisting the Compression Process:
3.1.2. Experimental Results
3.2. Supercritical Heat Pumps with Various Working Fluids
4. Development and Market Status of Supercritical Energy Conversion
4.1. Operational Pilot-Plants and Commercial Systems
4.2. Pathways in Future Development
- Supercritical carbon dioxide as a refrigerant in air conditioning, refrigerating systems and power systems.
- Supercritical refrigerants in thermodynamic cycles for heat and power conversion.
- Supercritical carbon dioxide, near-critical helium and liquid hydrocarbon used as cooling media.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; la Commare, U.; Micale, G. Industrial waste heat: Estimation of the technically available resource in the eu per industrial sector, temperature level and country. Appl. Therm. Eng. 2018, 138, 207–216. [Google Scholar] [CrossRef]
- Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Appl. Therm. Eng. 2019, 156, 287–298. [Google Scholar] [CrossRef]
- Luo, D.; Mahmoud, A.; Cogswell, F. Evaluation of low-gwp fluids for power generation with organic Rankine cycle. Energy 2015, 85, 481–488. [Google Scholar] [CrossRef]
- Bobbo, S.; di Nicola, G.; Zilio, C.; Brown, J.S.; Fedele, L. Low gwp halocarbon refrigerants: A review of thermophysical properties. Int. J. Refrig. 2018, 90, 181–201. [Google Scholar] [CrossRef]
- Lecompte, S.; Huisseune, H.; van den Broek, M.; de Paepe, M. Methodical thermodynamic analysis and regression models of organic rankine cycle architectures for waste heat recovery. Energy 2015, 87, 60–76. [Google Scholar] [CrossRef]
- Lecompte, S.; Huisseune, H.; van den Broek, M.; Vanslambrouck, B.; de Paepe, M. Review of organic rankine cycle (orc) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Aumann, R. Efficiency optimization potential in supercritical organic rankine cycles. Energy 2010, 35, 1033–1039. [Google Scholar] [CrossRef]
- Masuyama, F. History of power plants and progress in heat resistant steels. ISIJ Int. 2001, 41, 612–625. [Google Scholar] [CrossRef]
- Angelino, G. Carbon dioxide condensation cycles for power production. J. Eng. Power 1968, 90, 287–295. [Google Scholar] [CrossRef]
- Feher, E.G. The supercritical thermodynamic power cycle. Energy Convers. 1968, 8, 85–90. [Google Scholar] [CrossRef]
- Tian, H.; Yang, Z.; Li, M.; Ma, Y. Research and application of CO2 refrigeration and heat pump cycle. Sci. China Ser. E Technol. Sci. 2009, 52, 1563–1575. [Google Scholar] [CrossRef]
- Moisseytsev, A.; Sienicki, J.J. Investigation of a dry air-cooling option for an S-CO2 cycle. In Proceedings of the Supercritical CO2 Power Symposium, Pittsburgh, PA, USA, 9–10 September 2014. [Google Scholar]
- Macchi, E.; Astolfi, M. Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Li, C.; Besarati, S.; Goswami, Y.; Stefanakos, E.; Chen, H. Reverse osmosis desalination driven by low temperature supercritical organic Rankine cycle. Appl. Energy 2013, 102, 1071–1080. [Google Scholar] [CrossRef]
- Yağlı, H.; Koç, Y.; Koç, A.; Görgülü, A.; Tandiroğlu, A. Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (orc) for biogas fuelled combined heat and power (chp) engine exhaust gas waste heat. Energy 2016, 111, 923–932. [Google Scholar] [CrossRef]
- Li, M.; Ma, Y.; Gong, W.; Su, W. Analysis of CO2 transcritical cycle heat pump dryers. Dry. Technol. 2009, 27, 548–554. [Google Scholar] [CrossRef]
- Klocker, K.; Schmidt, E.L.; Steimle, F. Carbon dioxide as a working fluid in drying heat pumps. Int. J. Refrig. 2001, 24, 100–107. [Google Scholar] [CrossRef]
- Diaby, A.T.; Byrne, P.; Mare, T. Simulation of´ heat pumps for simultaneous heating and cooling using CO2. Int. J. Refrig. 2019. [Google Scholar] [CrossRef]
- Gu, Z.; Sato, H. Performance of supercritical cycles for geothermal binary design. Energy Convers. Manag. 2002, 43, 961–971. [Google Scholar] [CrossRef]
- Jiménez-Arreola, M.; Pili, R.; Dal Magro, F.; Wieland, C.; Rajoo, S.; Romagnoli, A. Thermal power fluctuations in waste heat to power systems: An overview on the challenges and current solutions. Appl. Therm. Eng. 2018, 134, 576–584. [Google Scholar] [CrossRef]
- Pieters, P.J. Evaluation of Sub- and Supercritical Rankine Cycle Optimization Criteria. Master’s Thesis, North-West University, Potchefstroom, South Africa, 2017. [Google Scholar]
- Peterseim, J.H.; Veeraragavan, A. Solar Towers with Supercritical Steam Parameters - is the Efficiency Gain worth the Effort? Energy Procedia 2015, 69, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Okoroigwe, E.; Madhlopa, A. An integrated combined cycle system driven by a solar tower: A review. Renew. Sustain. Energy Rev. 2016, 57, 337–350. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yang, Z.; Li, X.; Xu, G.; Yang, Y. An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle. Appl. Energy 2018, 231, 1319–1329. [Google Scholar] [CrossRef]
- Ferrara, F.; Gimelli, A.; Luongo, A. Small- scale concentrated solar power (CSP) plant: ORCs comparison for different organic fluids. Energy Procedia 2014, 45, 217–226. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Jiang, P.X. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures. Appl. Therm. Eng. 2012, 48, 476–485. [Google Scholar] [CrossRef]
- Karellas, S.; Schuster, A. Supercritical fluid parameters in organic Rankine cycle applications. Int. J. Thermodyn. 2008, 11, 101–108. [Google Scholar]
- Walraven, D.; Maenen, B.; D’haeseleer, W. Comparison of Thermodynamic Cycles for Power Production from Low-temperature Geothermal Heat Sources. Energy Convers. Manag. 2013, 66, 220–233. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, M. Working fluids for low- temperature organic Rankine cycles. Appl. Therm. Eng. 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization od subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar] [CrossRef]
- Guo, T.; Wang, H.; Zhang, S. Comparative analysis of natural and conventional working fluids for use in transcritical Rankine cycle using low-temperature geothermal source. Int. J. Energy Res. 2011, 35, 530–544. [Google Scholar] [CrossRef]
- Landelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Organic Rankine cycle design and performance comparison based on experimental database. Appl. Energy 2017, 204, 1172–1187. [Google Scholar] [CrossRef]
- Chen, H.; Coswami, Y.; Rahman, M.; Stefanakos, E. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy 2011, 36, 549–555. [Google Scholar] [CrossRef]
- Li, C.; Kosmadakis, G.; Manolakos, D.; Stefanakos, E.; Papadakis, G.; Goswami, Y. Performance investigation of concentrating solar collectors coupled with a transcritical organic Rankine cycle for power and seawater desalination co-generation. Desalination 2013, 318, 107–117. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Manolakos, D.; Papadakis, G. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions. Appl. Therm. Eng. 2016, 92, 1–7. [Google Scholar] [CrossRef]
- Lazova, M.; Huisseune, H.; Kaya, A.; Lecompte, S.; Kosmadakis, G.; De Paepe, M. Performance evaluation of a helical coil heat exchanger working under supercritical conditions in a solar organic Rankine cycle installation. Energies 2016, 9, 432. [Google Scholar] [CrossRef]
- Landelle, A.; Tauveron, N.; Revellin, R.; Haberschill, P.; Colasson, S. Experimental Investigation of a Transcritical Organic Rankine Cycle with Scroll Expander for Low-Temperature Waste Heat Recovery. Energy Procedia 2017, 129, 810–817. [Google Scholar] [CrossRef]
- Hsieh, J.C.; Fu, B.R.; Wang, T.W.; Cheng, Y.; Lee, Y.R.; Chang, J.C. Design and preliminary results of a 20-kW transcritical organic Rankinecycle with a screw expander for low-grade waste heat recovery. Appl. Therm. Eng. 2017, 110, 1120–1127. [Google Scholar] [CrossRef]
- Demierre, J.; Rubino, A.; Schiffmann, J. Modeling and Experimental Investigation of an Oil-Free Micro compressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump. J. Eng. Gas Turbomachines Power 2014. [Google Scholar] [CrossRef]
- Wang, D.; Dai, X.; Tian, R.; Shi, L. Experimental investigation of the heat transfer of supercritical R134a in a horizontal micro-fin tube. Int. J. Therm. Sci. 2019, 138, 536–549. [Google Scholar] [CrossRef]
- Astolfi, M.; Bini, R.; Macchi, E.; Pac, M.; Pietra, C.; Rossi, N.; Tizzanini, A. Testing of a new supercritical ORC technology for efficient power generation from geothermal low temperature resources. In Proceedings of the ASME ORC 2nd International Seminar on ORC Power Systems-Rotterdam (NL), Rotterdam, The Netherlands, 7–8 October 2013; Available online: www.kcorc.org/en/literature (accessed on 5 February 2019).
- Spadacini, C.; Centemeri, L.; Xodo, G.L.; Astolfi, M. A new configuration for Organic Rankine Cycle power systems. In Proceedings of the ORC 1st International Seminar on ORC Power Systems-Delft (NL), Delft, The Netherlands, 22–23 September 2011; Available online: www.kcorc.org/en/literature (accessed on 5 February 2019).
- Zhang, X.R.; Yamaguchi, H.; Uneno, D. Experimental study on the performance of solar Rankine system using supercritical CO2. Renew. Energy 2007, 32, 2617–2628. [Google Scholar] [CrossRef]
- Zhang, X.R.; Yamaguchi, H. An experimental study on evacuated tube solar collector using supercritical CO2. Appl. Therm. Eng. 2008, 28, 1225–1233. [Google Scholar] [CrossRef]
- Zhang, X.R.; Yamaguchi, H. An experimental investigation on characteristics of supercritical CO2 based solar Rankine system. Int. J. Energy Res. 2010, 35, 1168–1178. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Yamaguchi, H.; Fujima, K.; Enomoto, M.; Sawada, N. A feasibility study of CO2 based Rankine cycle powered by solar energy. JSME Int. J. Ser. B 2005, 48, 540–547. [Google Scholar] [CrossRef]
- Pan, L.; Li, B.; Wei, X.; Li, T. Experimental investigation on the CO2 transcritical power cycle. Energy 2016, 95, 247–254. [Google Scholar] [CrossRef]
- Ge, Y.T.; Li, L.; Luo, X.; Tassou, S.A. Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles. Appl. Energy 2018, 227, 220–230. [Google Scholar] [CrossRef]
- Li, L.; Ge, Y.T.; Luo, X.; Tassou, S.A. Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations. Appl. Therm. Eng. 2018, 136, 708–717. [Google Scholar] [CrossRef]
- Shi, L.; Shu, G.; Tian, H.; Huang, G.; Chen, T.; Li, X.; Li, D. Experimental comparison between four CO2 based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery. Energy Convers. Manag. 2017, 150, 159–171. [Google Scholar] [CrossRef]
- Li, X.; Shu, G.; Tian, H.; Shi, L.; Huang, G.; Chen, T.; Liu, P. Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery. Energy 2017, 140, 696–707. [Google Scholar] [CrossRef]
- Shi, L.; Shu, G.; Tian, H.; Huang, G.; Chang, L.; Chen, T.; Li, X. Ideal point design and operation of CO2 based transcritical Rankine cycle (CTRC) system based on high utilization of engine’s waste heats. Energies 2017, 10, 1692. [Google Scholar] [CrossRef]
- Zhang, X.R.; Yamaguchi, H.; Uneno, D.; Fujima, K.; Enomoto, M.; Sawada, N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew. Energy 2006, 31, 1839–1854. [Google Scholar] [CrossRef]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Crespi, F.; Gavagnin, G.; Sánchez, D.; Martínez, G.S. Supercritical carbon dioxide cycles for power generation: A review. Appl. Energy 2017, 195, 152–183. [Google Scholar] [CrossRef]
- Dyreby, J.; Klein, S.; Nellis, G.; Reindl, D. Design Considerations for Supercritical Carbon Dioxide Brayton Cycles with Recompression. J. Eng. Gas Turbines Power 2014, 136, 101701. [Google Scholar] [CrossRef]
- Kulhánek, M.; Dostál, V. Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, USA, 24–25 May 2011. [Google Scholar]
- Marchionni, M.; Bianchi, G.; Tassou, S.A. Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy 2018, 148, 1140–1152. [Google Scholar] [CrossRef]
- Vitale Di Maio, D.; Boccitto, A.; Caruso, G. Supercritical carbon dioxide applications for energy conversion systems. Energy Procedia 2015, 82, 819–824. [Google Scholar] [CrossRef]
- Held, T.J. Initial test results of a megawatt-glass supercritical CO2 heat engine. In Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014. [Google Scholar]
- Mecheri, M.; Le Moullec, Y. Supercritical CO2 Brayton cycles for coal-fired power plants. Energy 2016, 103, 758–771. [Google Scholar] [CrossRef]
- Coco Enríquez, L.; Muñoz Antón, J.; Martínez-Val Peñalosa, J.M. Comparison between s-CO2 and other supercritical working Fluids (s-Ethane, s-SF6, s-Xe, s-CH4, s-N2) in Line-Focusing Solar Power Plants with supercritical Brayton power cycles. In Proceedings of the European Conference Renewable Energy ECRES, Istanbul, Turkey, 18 August 2016; pp. 2–7. [Google Scholar]
- Ma, Z.; Turchi, C.S. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems Modular S-CO2 Receiver/Generation Unit for Tower/Solar Field. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, USA, 24–25 May 2011; pp. 4–7. [Google Scholar]
- Stein, W.H.; Buck, R. Advanced power cycles for concentrated solar power. Sol. Energy 2017, 152, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Parma Edward, J.J.; Wright, S.A.; Vernon, M.E.; Fleming, D.D.; Rochau, G.E.; Suo-Anttila, A.J.; Tsvetkov, P. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, USA, 24–25 May 2011. [Google Scholar]
- Qi, H.; Gui, N.; Yang, X.; Tu, J.; Jiang, S. The application of supercritical CO2 in nuclear engineering: A review. J. Comput. Multiph. Flows 2018, 10, 149–158. [Google Scholar] [CrossRef]
- Sienicki, J.J.; Moisseytev, A.; Krajtl, L. Utilization of the Supercritical CO2 Brayton Cycle with Sodium-Cooled Fast Reactors. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Vojacek, A.; Hacks, A.J.; Melichar, T.; Frybort, O.; Hájek, P. Challenges in supercritical CO2 power cycle technology and first operational experience at CVR. In Proceedings of the 2nd European Supercritical CO2 Conference, Essen, Germany, 30–31 August 2018; pp. 1–15. [Google Scholar]
- Starflinger, J.; Billert, D.; Frybort, O.; Hennink, A.; Hajek, P.; Freutel, T. Raising Nuclear Reactor Safety to a Higher Level-The Supercritical CO2 Heat Removal System-″s-CO2 HeRo″. In Proceedings of the 26th International Conference Nuclear Energy for New Europe, Bled-Slovenia, Republika Slovenija, 11–14 September 2017; pp. 1–8. [Google Scholar]
- Moore, J.; Brun, K.; Evans, N.; Kalra, C. Development of 1 MWe Supercritical CO2 Test Loop. In Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, PA, USA, 27–29 March 2018. [Google Scholar]
- Wygant, K.; Allison, T.; Pelton, R. Overview of Turbomachinery for Super-Critical CO2 Applications. In Proceedings of the Asia Turbomachinery & Pump Symposia, Austin, TX, USA, 13–15 March 2018. [Google Scholar]
- Held, T.J. Supercritical CO2 Cycles for Gas Turbine Combined Cycle Power Plants. Power Gen Int. 2015. [Google Scholar] [CrossRef]
- Wright, S.A.; Lipinski, R.J.; Vernon, M.E.; Sanchez, T. Closed Brayton Cycle Power Conversion Systems for Nuclear Reactors: Modeling, Operations, and Validation. Sandia Rep. 2006, 1–257. [Google Scholar]
- Iverson, B.D.; Conboy, T.M.; Pasch, J.J.; Kruizenga, A.M. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl. Energy 2009, 111, 957–970. [Google Scholar] [CrossRef]
- Conboy, T.; Wright, S. Experimental Investigation of the S-CO2 Condensing Cycle. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Albuquerque, NM, USA, 24–25 May 2011; pp. 1–14. [Google Scholar]
- Wright, S.A.; Radel, R.F.; Vernon, M.E.; Rochau, G.E.; Pickard, P.S. Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia Rep. 2010. [Google Scholar] [CrossRef]
- Anselmi, E.; Johnston, M.; Bunce, I. An Overview of the Rolls-Royce s-CO2 -Test Rig Project at Cranfield. In Proceedings of the 6th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 27–29 March 2018. [Google Scholar]
- Cha, J.E.; Bae, S.W.; Lee, J.; Cho, S.K.; Lee, J.I.; Park, J.H. Operation results of a closed supercritical CO2 simple Brayton cycle. In Proceedings of the 5th International Symposium–Supercritical CO2 Power Cycles, San Antonio, TX, USA, 28–31 March 2016. [Google Scholar]
- Cho, J.; Shin, H.; Cho, J.; Ra, H.S.; Roh, C.; Lee, B.; Baik, Y.J. Preliminary power generating operation of the supercritical carbon dioxide power cycle experimental test loop with a turbo-generator. In Proceedings of the 6th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 27–29 March 2018. [Google Scholar]
- Cho, J.; Shin, H.; Cho, J.; Ra, H.S.; Roh, C.; Lee, B.; Baik, Y.J. Development of the Supercritical Carbon Dioxide Power Cycle Experimental Loop with a Turbo-Generator. In Proceedings of the Asian Conference on Thermal Sciences 1st ACTS, Jeju Island, Korea, 26–30 March 2017. [Google Scholar]
- Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [Google Scholar] [CrossRef] [Green Version]
- Eikevik, T.M.; Strommen, I.; Alves-Filho, O. Heat pump fluidised bed dryer with CO2 as refrigerant–Measurements of COP and SMER. In Proceedings of the 3rd Nordic Drying Conference, Karlstad, Sweden, 15–17 June 2005. [Google Scholar]
- Sarkar, J.; Bhattacharyya, S.; Gopal, M.R. Transcritical carbon dioxide based heat pumps: Process heat applications. In Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 14–17 June 2004; p. 691. [Google Scholar]
- Wang, S.; Tuo, H.; Cao, F.; Xing, Z. Experimental investigation on air-source transcritical CO2 heat pump water heater system at a fixed water inlet temperature. Int. J. Refrig. 2013, 36, 701–716. [Google Scholar] [CrossRef]
- Sarkar, J.; Bhattacharyya, S.; Ramgopal, M. A transcritical CO2 heat pump for simultaneous water cooling and heating: Test results and model validation. Int. J. Energy Res. 2009, 33, 100–109. [Google Scholar] [CrossRef]
- Austin, B.T.; Sumathy, K. Transcritical carbon dioxide heat pump systems: A review. Renew. Sustain. Energy Rev. 2011, 15, 4013–4029. [Google Scholar] [CrossRef]
- Bamigbetan, O.; Eikevik, T.M.; Nekså, P.; Bantle, M. Review of vapour compression heat pumps for high temperature heating using natural working fluids. Int. J. Refrig. 2017, 80, 197–211. [Google Scholar] [CrossRef]
- Arpagaus, C.; Bless, F.; Schiffmann, J.; Bertsch, S.S. Multi-temperature heat pumps: A literature review. Int. J. Refrig. 2016, 69, 437–465. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Low GWP refrigerants R1234ze (E) and R1234ze (Z) for high temperature heat pumps. Int. J. Refrig. 2014, 40, 161–173. [Google Scholar] [CrossRef]
- Chamoun, M.; Rulliere, R.; Haberschill, P.; Peureux, J.L. Experimental and numerical investigations of a new high temperature heat pump for industrial heat recovery using water as refrigerant. Int. J. Refrig. 2014, 44, 177–188. [Google Scholar] [CrossRef]
- Badache, M.; Ouzzane, M.; Eslami-Nejad, P.; Aidoun, Z. Experimental study of a carbon dioxide direct-expansion ground source heat pump (CO2 DX-GSHP). Appl. Therm. Eng. 2018, 130, 1480–1488. [Google Scholar] [CrossRef]
- Wang, J.; Kang, L.; Liu, J. CO2 Transcritical Cycle for Ground Source Heat Pump. In Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; pp. 213–217. [Google Scholar]
- Rony, R.U.; Yang, H.; Krishnan, S.; Song, J. Recent Advances in Transcritical CO2 (R744) Heat Pump System: A Review. Energies 2019, 12, 457. [Google Scholar] [CrossRef]
- Sarkar, J. Review on Cycle Modifications of Transcritical CO2 Refrigeration and Heat Pump Systems. J. Adv. Res. Mech. Eng. 2010, 1, 22–29. [Google Scholar]
- Ma, Y.; Liu, Z.; Tian, H. A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 2013, 55, 156–172. [Google Scholar] [CrossRef]
- Ferrara, G.; Ferrari, L.; Fiaschi, D.; Galoppi, G.; Karellas, S.; Secchi, R.; Tempesti, D. Energy recovery by means of a radial piston expander in a CO2 refrigeration system. Int. J. Refrig. 2016, 72, 147–155. [Google Scholar] [CrossRef]
- Baek, J.S.; Groll, E.A.; Lawless, P.B. Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: Experimental investigation. Int. J. Refrig. 2005, 28, 141–151. [Google Scholar] [CrossRef]
- Li, M.; Ma, Y.; Tian, H. A rolling piston-type two-phase expander in the transcritical CO2 cycle. HVAC R Res. 2009, 15, 729–741. [Google Scholar] [CrossRef]
- Tian, H.; Ma, Y.; Li, M.; Wang, W. Study on expansion power recovery in CO2 trans-critical cycle. Energy Convers. Manag. 2010, 51, 2516–2522. [Google Scholar] [CrossRef]
- Kohsokabe, H.; Funakoshi, S.; Tojo, K. Basic operating characteristics of CO2 refrigeration cycles with expander-compressor unit. In Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, City of West Lafayette, IN, USA, 17–20 July 2006. [Google Scholar]
- Zhang, Z.; Ma, Y.; Li, M.; Zhao, L. Recent advances of energy recovery expanders in the transcritical CO2 refrigeration cycle. HVAC R Res. 2013, 19, 376–384. [Google Scholar]
- Sarkar, J. Optimization of ejector-expansion transcritical CO2 heat pump cycle. Energy 2008, 33, 1399–1406. [Google Scholar] [CrossRef]
- Xu, X.X.; Chen, G.M.; Tang, L.M.; Zhu, Z.J. Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure. Energy 2012, 44, 870–877. [Google Scholar] [CrossRef]
- Banasiak, K.; Hafner, A.; Andresen, T. Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. Int. J. Refrig. 2012, 35, 1617–1625. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, M.S.; Kim, M.S. Studies on the performance of a CO2 air conditioning system using an ejector as an expansion device. Int. J. Refrig. 2014, 38, 140–152. [Google Scholar] [CrossRef]
- Liu, F.; Groll, E.A.; Ren, J. Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system. Appl. Therm. Eng. 2016, 98, 1061–1069. [Google Scholar] [CrossRef]
- Boccardi, G.; Botticella, F.; Lillo, G.; Mastrullo, R.; Mauro, A.W.; Trinchieri, R. Experimental investigation on the performance of a transcritical CO2 heat pump with multi-ejector expansion system. Int. J. Refrig. 2017, 82, 389–400. [Google Scholar] [CrossRef]
- Minetto, S.; Brignoli, R.; Banasiak, K.; Hafner, A.; Zilio, C. Performance assessment of an off-the-shelf R744 heat pump equipped with an ejector. Appl. Therm. Eng. 2013, 59, 568–575. [Google Scholar] [CrossRef]
- Sarkar, J. Ejector enhanced vapor compression refrigeration and heat pump systems—A review. Renew. Sustain. Energy Rev. 2012, 16, 6647–6659. [Google Scholar] [CrossRef]
- Elbel, S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. Int. J. Refrig. 2011, 34, 1545–1561. [Google Scholar] [CrossRef]
- International Energy Agency. Annex 35Application of Industrial Heat Pumps, Final report, Part 1, Report; IEA: Paris, France, 2014. [Google Scholar]
- Mayekawa. Unimoww. Available online: https://www.mayekawa.com.au/products/heat-pumps/heatcom-water-heat-source/ (accessed on 15 February 2019).
- Yu, J.; Xu, Z.; Tian, G. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater. Energy Build. 2010, 42, 2431–2436. [Google Scholar] [CrossRef]
- Dayma, A.S.; Agrawal, N.; Nanda, P. Energetic and exergetic analyses of a transcritical N2O heat pump system. Int. J. Low Carbon Technol. 2013, 9, 277–283. [Google Scholar] [CrossRef]
- Wang, F.; Wang, F.; Fan, X.; Lian, Z. Experimental study on an inverter heat pump with HFC125 operating near the refrigerant critical point. Appl. Therm. Eng. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- International Energy Agency, OECD. World Energy Outlook 2015. Available online: https://www.iea.org/ bookshop/700-World_Energy_Outlook_2015 (accessed on 14 January 2019).
- Susta, M.R.; Seong, K.B. Supercritical and ultra-supercritical power plants-sea’s vision or reality. In Proceedings of the Powergen Asia 2004, Bangkok, Thailand, 4 May 2004. [Google Scholar]
- Mayekawa. Unimoww-Water Source CO2 Heat Pump (Hot Water and Chilled Water Supply). Available online: https://www.mayekawa.com.au/products/ heat-pumps/heatcom-water-heat-source/ 2018 (accessed on 14 January 2019).
- Okada, T. Development of CO2 Heat Pump Hot Water System. Mitsubishi Electr. Adv. 2007, 120, 6–9. [Google Scholar]
- Pioro, I. Nuclear power as a basis for future electricity production in the world: Generation iii and iv reactors. Curr. Res. Nucl. React. Technol. Braz. Worldw. 2012, 211–250. [Google Scholar] [CrossRef]
- Pioro, I.L.; Duffey, R.B. Heat-Transfer Enhancement at Supercritical Pressures; ASME Press: New York, NY, USA, 2007. [Google Scholar]
- Anikeev, V.; Fan, M. Supercritical Fluid Technology for Energy and Environmental Applications; Elsevier: Amsterdam, Netherlands, 2013. [Google Scholar]
- Cabeza, L.F.; de Gracia, A.; Fernández, A.I.; Farid, M.M. Supercritical CO2 as heat transfer fluid: A review. Appl. Therm. Eng. 2017, 125, 799–810. [Google Scholar] [CrossRef]
- Huang, D.; Wu, Z.; Sunden, B.; Li, W. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Appl. Energy 2016, 162, 494–505. [Google Scholar] [CrossRef]
- Vetter, G. Supercritical fluids pumping at high pressure. In Proceedings of the 1st International Symposium on Supercritical Fluids, Nice, France, 17–19 October 1998; pp. 587–594. [Google Scholar]
- Stepczynska, K.; Lukowicz, H.; Dykas, S. Diverse configurations of the boiler feed pump drive for the ultra-supercritical 900-mw steam plant. Int. J. Energy Environ. Eng. 2012, 3, 3. [Google Scholar] [CrossRef]
- Garrett, J.C.P.; Crook, J.T.; Lister, S.K.; Nolan, P.J.; Twelves, J.A. Factors in the oxidation assessment of aisi type 310 steels in high pressure carbon dioxide. Corros. Sci. 1982, 22, 37–50. [Google Scholar] [CrossRef]
- Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros. Sci. 2011, 53, 3273–3280. [Google Scholar] [CrossRef]
- Moore, R.; Conboy, T. Metal corrosion in a supercritical carbon dioxide–liquid sodium power cycle. Sandia Natl. Lab. Rep. 2012, 2012, 184. [Google Scholar]
Fluids | Mol. Wt. | NBP (°C) | pc (bar) | tc (°C) | GWP |
---|---|---|---|---|---|
R744 | 44.01 | −56.6 | 73.8 | 31.1 | 1 |
R170 | 30.07 | −88.6 | 48.7 | 32.2 | 3 |
R744a | 44.01 | −88.5 | 72.4 | 36.4 | 298 |
R41 | 34.03 | −78.1 | 59.0 | 44.1 | 97 |
R32 | 52.02 | −51.6 | 57.8 | 78.1 | 550 |
R1270 | 42.08 | −47.7 | 46.6 | 92.4 | 2 |
R290 | 44.09 | −42.1 | 42.5 | 96.7 | 3 |
R152a | 66.05 | −24.0 | 54.20 | 113.3 | 120 |
C3H4 | 40.06 | −23.2 | 56.3 | 129.2 | 150 |
R717 | 17.07 | −33.3 | 113.3 | 132.2 | 0 |
R600a | 58.12 | −11.8 | 36.30 | 134.6 | 3 |
Small Scale Systems | |||
---|---|---|---|
Application | T Range [°C] | Power Production [kWel] | Refrigerant |
CPV-T ORC with scroll expander and heat exchanger development, Kosmadakis et al. [35] | 65–100 | 3 | R-404a |
Transcritical ORC with scoll expander and four heat exchangers, Landelle et al. [37] | 55–120 | 1.5 | R-134a |
Transcritical ORC with two multistage centrifugal pumps and a twin-screw expander with induction generator, Hsieh et al. [38] | 90–100 | 20 | R-218 |
Supercritical ORC with oil-free compressor-turbine unit for a thermally driven heat-pump, Demierre et al. [39] | 95–123 | 2 | R-134a |
Large Scale Systems | |||
Supercritical ORC for geothermal applications, variable operation according to heat available, Astolfi et al. [41] | 120–180 | 500 | R-134a |
Supercritical ORC with radial outflow turbine and PP1 working fluid, Spadacini et al. [42] | 130–170 | 1000 | PP1 |
Supercritical ORC with two-stage turbocharger for waste-heat recovery from a gas turbine in a natural gas pipeline, Atlas Copco and Mistral Power. [13] | 250 | 7500 | Butane |
M (g/mol) | BP (°C) | CP (°C/MPa) | ASHRAE | ODP | GWP 100 Year | Atm. Life (Year) | LFL % |
---|---|---|---|---|---|---|---|
44 | −78.4 | 31/7.38 | A1 | 0 | 1 | >50 | none |
Author | Heat Transfer | Evaporator/Gas Heater | Turbine/Expansion Device | Fluids | Fluid Pump | Cooling System | Application |
---|---|---|---|---|---|---|---|
Li et al. [49] | Flue gas from a 80 kWe CHP unit/thermal oil | Plate heat exchanger | Single stage axial (Reaction), 5 kWe and 5 kWe | R245fa, CO2 | Diaphragm pump (R245fa), and triplex plunger pump (CO2) | Air cooled | Heat recovery |
Ge et al. [48] | Flue gas from a 80 kWe CHP unit/thermal oil (124–144 °C) | Plate heat exchanger | Single stage axial (Reaction), 5 kWe | CO2 | Triplex plunger pump | Air cooled | Heat recovery |
Pan et al. [47] | Oil heater/thermal oil/ | Shell and tube HX | 2 kW Rolling Piston expander | CO2 | Plunger pump (2/20 MPa) | Shell and tube HX/cold water/ refrigeration unit | Waste heat recovery |
Shi et al. [50] | Flue gas from diesel engine | Gas heater/double pipe | Expansion valve | CO2 | plunger pump | Cold water (7–13 °C) from a refrigeration unit | Heat recovery |
Li et al. [51] | Flue gas from four-stroke six cylinders heavy duty diesel engine (water cooled) | Tube in tube HX | Expansion valve | CO2 | Reciprocating plunger pump | Brazed plate HX, Cold water (7–13 °C) from a refrigeration unit | Heat recovery |
Shi et al. [52] | Engine coolant water and flue gas from diesel engine | Preheater and gas heater/double pipe | Expansion valve | CO2 | plunger pump | Cold water (7–13 °C) from a refrigeration unit | Heat recovery |
Zhang et al. [43], Zhang and Yamaguchi [44] | Direct evaporation/Evacuated tube solar collectors | Evacuated tube solar collectors | Pressure relief valve | CO2 | Piston pump | Shell and tube HX/Cold water from a cooling tower | Solar energy harvesting |
Plant/Company Name | Country | Type | Working Fluid | Output (kW) | Year of Commissioning |
---|---|---|---|---|---|
Granite Power | Australia | Solar | GRANEX R | 30 | 2014 |
TAS | USA | Geothermal | R134a | 22,000 | 2012 |
Atlas Copco | Canada | Waste Heat | Butane | 7500 | 2012 |
Turboden | Italy | Geothermal | - | 500 | 2012 |
San Emidio | USA | Geothermal | R134a | 8000 | 2013 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecompte, S.; Ntavou, E.; Tchanche, B.; Kosmadakis, G.; Pillai, A.; Manolakos, D.; De Paepe, M. Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application. Appl. Sci. 2019, 9, 2571. https://doi.org/10.3390/app9122571
Lecompte S, Ntavou E, Tchanche B, Kosmadakis G, Pillai A, Manolakos D, De Paepe M. Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application. Applied Sciences. 2019; 9(12):2571. https://doi.org/10.3390/app9122571
Chicago/Turabian StyleLecompte, Steven, Erika Ntavou, Bertrand Tchanche, George Kosmadakis, Aditya Pillai, Dimitris Manolakos, and Michel De Paepe. 2019. "Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application" Applied Sciences 9, no. 12: 2571. https://doi.org/10.3390/app9122571
APA StyleLecompte, S., Ntavou, E., Tchanche, B., Kosmadakis, G., Pillai, A., Manolakos, D., & De Paepe, M. (2019). Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application. Applied Sciences, 9(12), 2571. https://doi.org/10.3390/app9122571