Concrete Cracks Detection Based on FCN with Dilated Convolution
Abstract
:1. Introduction
2. Related Work
2.1. The Methods Based on Image Patch Classification
2.2. The Methods Based on Boundary Box Regression
2.3. The Methods Based on Semantic Segmentation
3. The Proposed Model
3.1. Model Description
3.1.1. The Encoder
3.1.2. Residual Block
3.1.3. Dilated Convolution
3.1.4. The Decoder
3.2. Loss Function
3.3. Parameter Optimization
3.4. Training and Testing
Algorithm 1 Model training algorithm |
Input:I //Training sample set //The parameters of the model |
1: , , 2: for I = 1:400 do 3: // is obtained by randomly dividing I by batch size that is set // to 64 in our experiment. consists of all samples of one batch. 4: for s in S do 5: Calculate by forward processing s; 6: Calculate by using SoftMax to process ; 7: Calculate L according to Equation (7); 8: Calculate according to Equation (10); 9: Update according to Equation (11); 10: end for 11: end for 12: return |
Output: // The parameters of the model |
4. Experiments
4.1. Dataset
4.2. Evaluation Indicators
4.3. Experimental Preparation
4.3.1. Experimental Environment
4.3.2. Experimental Design
4.3.3. The Hyper Parameters
4.4. Results and Analysis
4.4.1. Performance on Validation Set
4.4.2. Performance on Test Sets
4.4.3. Effect Shown
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nhat-Duc, H. Detection of Surface Crack in Building Structures Using Image Processing Technique with an Improved Otsu Method for Image Thresholding. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Liu, X.; Ai, Y.; Scherer, S. Robust Image-Based Crack Detection in Concrete Structure Using Multi-Scale Enhancement and Visual Features. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 2304–2308. [Google Scholar]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures. Infrastructures 2019, 4, 19. [Google Scholar] [CrossRef]
- Cha, Y.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civil Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Dorafshan, S.; Thomas, R.; Coopmans, C.; Maguire, M. Deep Learning Neural Networks for sUAS-Assisted Structural Inspections: Feasibility and Application. In Proceedings of the International Conference on Unmanned Aircraft Systems, 650 N. Pearl Str., Dallas, TX, USA, 2–15 June 2018; pp. 874–882. [Google Scholar]
- Cha, Y.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. In Proceedings of the IEEE Intelligent Vehicles Symposium, Changshu, Suzhou, China, 26–30 September 2018; pp. 1013–1020. [Google Scholar]
- Kampffmeyer, M.; Salberg, A.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26–30 June 2016; pp. 680–688. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Ren, S. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Concrete Crack Images for Classification. Available online: https://data.mendeley.com/datasets/5y9wdsg2zt/1 (accessed on 1 June 2019).
- Alberto, G.; Sergio, O.; Sergiu, O.; Victor, V.; Jose, G. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Ng, H.; Hashim, M.; Jaw, S. Building Concrete Cracks Detection Using Image-Based Nondestructive Geotechnical Technique. In Proceedings of the Asian Conference on Remote Sensing 2014: Sensing for Reintegration of Societies, Nay Pyi Taw, Myanmar, 27–31 October 2014. [Google Scholar]
- Taghavipour, S.; Kharkovsky, S.; Kang, W.; Samali, B.; Mirza, O. Detection and Monitoring of Flexural Cracks in Reinforced Concrete Beams Using Mounted Smart Aggregate Transducers. Smart Mater. Struct. 2017, 26. [Google Scholar] [CrossRef]
- Voigt, B.; Bordin, F.; Gorkos, P.; Veronez, M. Detection of Cracks and Loss of Mass in Concrete Through 3D Point Clouds Generated by Terrestrial Laser Scanner. In Proceedings of the International Conference on Bridge Maintenance, Safety and Management, Foz do Iguaçu, Brazil, 26–30 June 2016; pp. 1840–1845. [Google Scholar]
- Chen, Y.; Wang, J.; Xia, R.; Zhang, Q.; Cao, Z.; Yang, K. The Visual Object Tracking Algorithm Research Based on Adaptive Combination Kernel. J. Ambient Intell. Humaniz. Comput. 2019, (in press). [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Sangaiah, A. Spatial and Semantic Convolutional Features for Robust Visual Object Tracking. Multimed. Tools Appl. 2018, in press. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Jin, X.; Li, F.; Wang, J. A Fast Object Tracker Based on Integrated Multiple Features and Dynamic Learning Rate. Math. Probl. Eng. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Li, K. Dual Model Learning Combined with Multiple Feature Selection for Accurate Visual Tracking. IEEE Access. 2019, 7, 43956–43969. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Li, X.; K, H.; W, J. A Full Convolutional Network Based on DenseNet for Remote Sensing Scene Classification. Math. Biosci. Eng. 2019, 16, 3345–3367. [Google Scholar] [CrossRef]
- Gatys, L.; Ecker, A.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 2414–2423. [Google Scholar]
- Calderón, L.; Bairan, J. Crack Detection in Concrete Elements from RGB Pictures Using Modified Line Detection Kernels. In Proceedings of the Intelligent Systems Conference, London, UK, 7–8 September 2017; pp. 799–805. [Google Scholar]
- Dinh, T.; Ha, Q.; La, H. Computer Vision-Based Method for Concrete Crack Detection. In Proceedings of the International Conference on Control, Automation, Robotics and Vision, Phuket, Thailand, 13–15 November 2016. [Google Scholar]
- Qu, Z.; Guo, Y.; Ju, F.; Liu, L.; Lin, L.D. The Algorithm of Accelerated Cracks Detection and Extracting Skeleton by Direction Chain Code in Concrete Surface Image. Imaging Sci. J. 2016, 64, 119–130. [Google Scholar] [CrossRef]
- Karen, S.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Zhou, S.; Liang, W.; Li, J.; Kim, J. Improved VGG Model for Road Traffic Sign Recognition. CMC-Comput. Mat. Contin. 2018, 57, 11–24. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Ke, M.; Luo, P. Multi-Camera Transfer GAN for Person Re-Identification. J. Vis. Commun. Image Represent. 2019, 59, 393–400. [Google Scholar] [CrossRef]
- Tu, Y.; Lin, Y.; Wang, J.; Kim, J. Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification. CMC-Comput. Mat. Contin. 2018, 55, 243–254. [Google Scholar]
- Zeng, D.; Dai, Y.; Li, F.; Sherratt, R.; Wang, J. Adversarial Learning for Distant Supervised Relation Extraction. CMC-Comput. Mat. Contin. 2018, 55, 121–136. [Google Scholar]
- Long, M.; Zeng, Y. Detecting Iris Liveness with Batch Normalized Convolutional Neural Network. CMC-Comput. Mat. Contin. 2019, 58, 493–504. [Google Scholar] [CrossRef]
- Kasthurirangan, G. Deep Learning in Data-Driven Pavement Image Analysis and Automated Distress Detection: A Review. Data 2018, 3, 28. [Google Scholar] [Green Version]
- Wang, X.; Hu, Z. Grid-Based Pavement Crack Analysis Using Deep Learning. In Proceedings of the International Conference on Transportation Information and Safety, Banff, AB, Canada, 8–10 August 2017; pp. 917–924. [Google Scholar]
- Chen, F.; Jahanshahi, M. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [Google Scholar] [CrossRef]
- Cha, Y.; Choi, W. Vision-Based Concrete Crack Detection Using a Convolutional Neural Network. In Proceedings of the IMAC Conference and Exposition on Structural Dynamics, Garden Grove, CA, USA, 1–2 February 2016; pp. 71–73. [Google Scholar]
- Kim, B.; Cho, S. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors. 2018, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, W.; Zhang, X.; Zhou, Q. A Two-Stage Crack Detection Method for Concrete Bridges Using Convolutional Neural Networks. IEICE Trans. Inf. Syst. 2018, 101, 3249–3252. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, M. Automated Detection of Sewer Pipe Defects in Closed-Circuit Television Images Using Deep Learning Techniques. Autom. Constr. 2018, 95, 155–171. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y. A Fast Detection Method via Region-Based Fully Convolutional Neural Networks for Shield Tunnel Lining Defects. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 638–654. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer Vision-Based Concrete Crack Detection Using U-net Fully Convolutional Networks. Autom Constr. 2019, 104, 129–139. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, K.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.; Chen, C. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Dung, C.; Anh, L. Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 1090–1109. [Google Scholar] [CrossRef]
- Pandiyan, V.; Murugan, P.; Tjahjowidodo, T.; Caesarendra, W.; Manyar, O.; Then, D. In-Process Virtual Verification of Weld Seam Removal in Robotic Abrasive Belt Grinding Process Using Deep Learning. Robot. Comput. -Integr. Manuf. 2019, 57, 477–487. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–25 June 2010; pp. 807–814. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lile, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications. Available online: https://digitalcommons.usu.edu/all_datasets/48/ (accessed on 16 June 2019).
Model | Training Time (s) | Number of Layers | Parameters (Millions) |
---|---|---|---|
The Proposed Model | 2756.91 | 29 | 14.38 |
FCN-VGG | 3139.70 | 19 | 18.64 |
FCN-Resnet-18 | 2049.80 | 29 | 15.10 |
FCN-Resnet-50 | 2866.19 | 62 | 34.51 |
Model | PA | MPA | MIoU | FWIoU |
---|---|---|---|---|
FCN-Resnet-50 | 95.53 | 91.36 | 82.01 | 92.20 |
FCN-Resnet-18 | 96.10 | 89.75 | 82.79 | 92.90 |
FCN-VGG | 96.41 | 90.27 | 83.90 | 93.40 |
The proposed model | 96.84 | 92.55 | 86.05 | 94.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci. 2019, 9, 2686. https://doi.org/10.3390/app9132686
Zhang J, Lu C, Wang J, Wang L, Yue X-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Applied Sciences. 2019; 9(13):2686. https://doi.org/10.3390/app9132686
Chicago/Turabian StyleZhang, Jianming, Chaoquan Lu, Jin Wang, Lei Wang, and Xiao-Guang Yue. 2019. "Concrete Cracks Detection Based on FCN with Dilated Convolution" Applied Sciences 9, no. 13: 2686. https://doi.org/10.3390/app9132686
APA StyleZhang, J., Lu, C., Wang, J., Wang, L., & Yue, X.-G. (2019). Concrete Cracks Detection Based on FCN with Dilated Convolution. Applied Sciences, 9(13), 2686. https://doi.org/10.3390/app9132686