Data Analytics in Smart Healthcare: The Recent Developments and Beyond
Abstract
:1. Introduction
2. Special Issue Articles
3. Emergent Topics in Smart Healthcare
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lytras, M.D.; Visvizi, A. Who Uses Smart City Services and What to Make of It: Toward Interdisciplinary Smart Cities Research. Sustainability 2018, 10, 1998. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A.; Daniela, L.; Sarirete, A.; De Pablos, P.O. Social Networks Research for Sustainable Smart Education. Sustainability 2018, 10, 2974. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Tseng, F.-M. An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China. Technol. Forecast. Soc. Chang. 2018. [Google Scholar] [CrossRef]
- Chui, K.T.; Alhalabi, W.; Pang, S.S.H.; Pablos, P.; Liu, R.W.; Zhao, M. Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications. Sustainability 2017, 9, 2309. [Google Scholar] [CrossRef]
- Scheffler, R.; Cometto, G.; Tulenko, K.; Bruckner, T.; Liu, J.; Keuffel, E.L.; Preker, A.; Stilwell, B.; Brasileiro, J.; Campbell, J. Health Workforce Requirements for Universal Health Coverage and the Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Menger, V.; Scheepers, F.; Spruit, M. Comparing Deep Learning and Classical Machine Learning Approaches for Predicting Inpatient Violence Incidents from Clinical Text. Appl. Sci. 2018, 8, 981. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Alfian, G.; Syafrudin, M.; Rhee, J. Hybrid Prediction Model for Type 2 Diabetes and Hypertension Using DBSCAN-Based Outlier Detection, Synthetic Minority Over Sampling Technique (SMOTE), and Random Forest. Appl. Sci. 2018, 8, 1325. [Google Scholar] [CrossRef]
- Mun, S.; Park, J.; Dritschilo, A.; Collins, S.; Suy, S.; Choi, I.; Rho, M. The Prostate Clinical Outlook (PCO) Classifier Application for Predicting Biochemical Recurrences in Patients Treated by Stereotactic Body Radiation Therapy (SBRT). Appl. Sci. 2018, 8, 1620. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Zhang, W. Data Analysis and Forecasting of Tuberculosis Prevalence Rates for Smart Healthcare Based on a Novel Combination Model. Appl. Sci. 2018, 8, 1693. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C. Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health. Appl. Sci. 2018, 8, 2674. [Google Scholar] [CrossRef]
- Shen, Z.; Spruit, M. A Systematic Review of Open Source Clinical Software on GitHub for Improving Software Reuse in Smart Healthcare. Appl. Sci. 2019, 9, 150. [Google Scholar] [CrossRef]
- Saint-Pierre, C.; Prieto, F.; Herskovic, V.; Sepúlveda, M. Relationship between Continuity of Care in the Multidisciplinary Treatment of Patients with Diabetes and Their Clinical Results. Appl. Sci. 2019, 9, 268. [Google Scholar] [CrossRef]
- Ünver, H.M.; Kökver, Y.; Duman, E.; Erdem, O.A. Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization. Appl. Sci. 2019, 9, 350. [Google Scholar] [CrossRef]
- Polat, H.; Mehr, H.D. Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network Architecture. Appl. Sci. 2019, 9, 940. [Google Scholar] [CrossRef]
- Chang, W.; Liu, Y.; Xiao, Y.; Xu, X.; Zhou, S.; Lu, X.; Cheng, Y. Probability Analysis of Hypertension-Related Symptoms Based on XGBoost and Clustering Algorithm. Appl. Sci. 2019, 9, 1215. [Google Scholar] [CrossRef]
- Rew, J.; Choi, Y.-H.; Kim, H.; Hwang, E. Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis. Appl. Sci. 2019, 9, 1228. [Google Scholar] [CrossRef]
- Zhuhadar, L.P.; Thrasher, E. Data Analytics and Its Advantages for Addressing the Complexity of Healthcare: A Simulated Zika Case Study Example. Appl. Sci. 2019, 9, 2208. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D. A Novel MOGA-SVM Multinomial Classification for Organ Inflammation Detection. Appl. Sci. 2019, 9, 2284. [Google Scholar] [CrossRef]
- Bansal, D.; Chhikara, R.; Khanna, K.; Gupta, P. Comparative Analysis of Various Machine Learning Algorithms for Detecting Dementia. Procedia Comput. Sci. 2018, 132, 1497–1502. [Google Scholar] [CrossRef]
- Clarke, N.; Barrick, T.; Garrard, P. Predicting dementia from written texts using feature extraction and machine learning. Alzheimer. Dement. 2018, 14, P538. [Google Scholar] [CrossRef]
- Chiu, P.-Y.; Tang, H.; Wei, C.-Y.; Zhang, C.; Hung, G.-U.; Zhou, W. NMD-12: A new machine-learning derived screening instrument to detect mild cognitive impairment and dementia. PLoS ONE 2019, 14, e0213430. [Google Scholar] [CrossRef] [PubMed]
- Kotsilieris, T.; Pintelas, E.; Livieris, I.E.; Pintelas, P. Reviewing Machine Learning Techniques for Predicting Anxiety Disorders; Technical Report TR01-18; University of Patras: Patras, Greece, 2018. [Google Scholar]
- Bin Wan Hamat, W.J.; bin Ishak, H.M.; Hashikura, K.; Suzuki, T.; Yamada, K. Detection of Anxiety Expression from EEG Analysys Using Support Vector Machine. ECTI Trans. Electr. Eng. Electron. Commun. 2019, 17, 87–94. [Google Scholar]
- Hilbert, K.; Lueken, U.; Muehlhan, M.; Beesdo-Baum, K.; Beesdo-Baum, K. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain Behav. 2017, 7, e00633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Hung, Y.H.; Agarwal, P.; Kalra, M. A study on blockchain applications in healthcare. In In FC 2018: Frontier Computing, Proceedings of the International Conference on Frontier Computing, Kuala Lumpur, Malaysia, 3–6 July 2018; Springer: Singapore, 2018; pp. 623–628. [Google Scholar]
- Hanley, M.; Tewari, H. Managing lifetime healthcare data on the blockchain. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) 2018, Guangzhou, China, 8–12 October 2018; pp. 246–251. [Google Scholar]
- Vazirani, A.A.; O’Donoghue, O.; Brindley, D.; Meinert, E. Implementing Blockchains for Efficient Health Care: Systematic Review. J. Med. Internet Res. 2019, 21, e12439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Diao, J.; Kohane, I.S.; Manrai, A.K. Biomedical informatics and machine learning for clinical genomics. Hum. Mol. Genet. 2018, 27, R29–R34. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Avsec, Ž.; Gagneur, J.; Theis, F.J. Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet. 2019, 20, 389–403. [Google Scholar] [CrossRef]
- Bracq, M.S.; Michinov, E.; Jannin, P. Virtual reality simulation in nontechnical skills training for healthcare professionals: A systematic review. Simul. Healthc. 2019, 14, 188–194. [Google Scholar] [CrossRef]
- Zhang, M.W.; Ho, R. Smartphone applications for immersive virtual reality therapy for internet addiction and internet gaming disorder. Technol. Health Care 2017, 25, 367–372. [Google Scholar] [CrossRef]
- McGrath, J.L.; Taekman, J.M.; Dev, P.; Danforth, D.R.; Mohan, D.; Kman, N.; Talbot, T.B. Using virtual reality simulation environments to assess competence for emergency medicine learners. Acad. Emerg. Med. 2018, 25, 186–195. [Google Scholar] [CrossRef]
- Benetoli, A.; Chen, T.; Aslani, P. How patients’ use of social media impacts their interactions with healthcare professionals. Patient Educ. Couns. 2018, 101, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Q.; Ip, M.; Lau, J.T.F. Social Media–based Conversational Agents for Health Management and Interventions. Computer 2018, 51, 26–33. [Google Scholar] [CrossRef]
- Majeed, F.; Asif, M.W.; Hassan, M.A.; Abbas, S.A.; Lali, M.I. Social Media News Classification in Healthcare Communication. J. Med. Imaging Health Inform. 2019, 9, 1215–1223. [Google Scholar] [CrossRef]
- Dandapani, H.G.; Tieu, K. The contemporary role of robotics in surgery: A predictive mathematical model on the short-term effectiveness of robotic and laparoscopic surgery. Laparosc. Endosc. Robot. Surg. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Greenberg, J.A. From Open to MIS: Robotic Surgery Enables Surgeons to Do More with Less. Ann. Surg. 2018, 267, 220. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.F.; McCann, A.; Malhotra, N.R.; O’Malley, B.W. Novel Approach Using Transoral Robotic Surgery for Resection of Cervical Spine Chordoma. J. Neurol. Surg. B 2018, 79, P081. [Google Scholar] [CrossRef]
Work | Application | Methodology |
---|---|---|
[7] | Prediction of inpatient violence incidents | Recurrent neural network; convolutional neural network; neural network; Naïve Bayes; support vector machine; decision tree |
[8] | Prediction of type 2 diabetes and hypertension | density-based spatial clustering; synthetic minority over-sampling |
[9] | Prediction of biochemical recurrences in patients treated by stereotactic body radiation therapy | prostate clinical outlook |
[10] | Forecast of tuberculosis prevalence rate | Kruskal–Wallist test; regression model; Cuckoo search optimization algorithm; radial basis function neural networks |
[11] | Investigation of the association between policy factors and healthcare system efficiency | Tobit model |
[12] | Improvement on software reuse in smart healthcare | Systematic analysis |
[13] | Investigation of the relationship between continuity of care in the multidisciplinary treatment of patients with diabetes and their clinical results | Statistical analysis |
[14] | Optic disk localization | Statistical edge detection; circular hough transform |
[15] | Classification of lung cancers | Deep convolutional neural network; support vector machine |
[16] | Probability analysis of hypertension-related symptoms | XGBoost; clustering algorithm |
[17] | Skin aging estimation | Scale-invariant feature transform; color histogram intersection; polynomial regression; support vector regression |
[18] | Minimizing the number of physicians and nurses | Discrete event simulations |
[19] | Classification of organ inflammation | Genetic algorithm; support vector machine |
Emergent Topics | Recommended Readings |
---|---|
Detection of dementia (including Alzheimer’s disease) | [20,21,22] |
Detection of anxiety | [23,24,25] |
Medicalchain–Blockchain and healthcare | [26,27,28] |
Genetics and genomics | [29,30,31] |
Virtual reality in healthcare | [32,33,34] |
Social media in healthcare | [35,36,37] |
Robotic surgery | [38,39,40] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lytras, M.D.; Chui, K.T.; Visvizi, A. Data Analytics in Smart Healthcare: The Recent Developments and Beyond. Appl. Sci. 2019, 9, 2812. https://doi.org/10.3390/app9142812
Lytras MD, Chui KT, Visvizi A. Data Analytics in Smart Healthcare: The Recent Developments and Beyond. Applied Sciences. 2019; 9(14):2812. https://doi.org/10.3390/app9142812
Chicago/Turabian StyleLytras, Miltiadis D., Kwok Tai Chui, and Anna Visvizi. 2019. "Data Analytics in Smart Healthcare: The Recent Developments and Beyond" Applied Sciences 9, no. 14: 2812. https://doi.org/10.3390/app9142812
APA StyleLytras, M. D., Chui, K. T., & Visvizi, A. (2019). Data Analytics in Smart Healthcare: The Recent Developments and Beyond. Applied Sciences, 9(14), 2812. https://doi.org/10.3390/app9142812