Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen
Abstract
1. Introduction
2. Materials and Methods
2.1. Bitumen
2.2. Preparation of Atomic Force Microscopes (AFM) Samples
2.3. Atomic Force Microscope (AFM) Test Conditions and Methods
2.4. Test Methods
2.4.1. Analysis Nano-Morphological Characteristics of Bitumen
2.4.2. Nano-Morphological Parameters
3. Nano-Morphological Parameters and Technical Indexes of Aged Bitumen
3.1. Nano-Morphological Parameters Test Results of Aged Bitumen
3.2. Relation Between Nano-Morphological Parameters and Technical Indexes of Bitumen After Ageing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cuciniello, G.; Leandri, P.; Filippi, S.; Presti, D.L.; Losa, M.; Airey, G. Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Mater. Struct. 2018, 51, 136. [Google Scholar] [CrossRef]
- Bressi, S.; Carter, A.; Bueche, N.; Dumont, A.G. Impact of different ageing levels on binder rheology. Int. J. Pavement Eng. 2016, 17, 403–413. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Z.; Zhang, Y.; Hu, K.; Ding, L.; Wang, F. The effect of direct-to-plant styrene-butadiene-styrene block copolymer components on bitumen modification. Polymers 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Nare, K.; Hlangothi, S.P. Thermorheological evaluation of antiaging behavior of four antioxidants in 70/100 bitumen. J. Mater. Civ. Eng. 2019, 31, 04019034. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Wang, D.; Porot, L.; Hofko, B. Impact of asphalt aging temperature on chemo-mechanics. RSC Adv. 2019, 9, 11602–11613. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Yu, J.; Xu, S. A strain-hardening cementitious composites with the tensile capacity up to 8%. Constr. Build. Mater. 2017, 137, 410–419. [Google Scholar] [CrossRef]
- Yu, X.; Zaumanis, M.; Dos Santos, S.; Poulikakos, L.D. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 2014, 135, 162–171. [Google Scholar] [CrossRef]
- Guindon, L. The Effects of minerals on heavy-oil and bitumen chemistry when recovered by steam-assisted methods. J. Can. Petrol. Technol. 2015, 54, 15–17. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, Z.; Wang, F. Effect and prediction of aromatic oil on swelling degree of direct-to-plant SBS modifier in bitumen. Petrol. Sci. Technol. 2019, 37, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Jia, Z. Design of SBS-modified bitumen stabilizer powder based on the vulcanization mechanism. Appl. Sci. 2018, 8, 457. [Google Scholar] [CrossRef]
- Kumbargeri, Y.S.; Biligiri, K.P. Rational performance indicators to evaluate asphalt materials’ aging characteristics. J. Mater. Civil Eng. 2016, 28, 04016157. [Google Scholar] [CrossRef]
- Kayukova, G.P.; Vakhin, A.V.; Mikhailova, A.N.; Petrov, S.M.; Sitnov, S.A. Road bitumen’s based on the vacuum residue of heavy oil and natural asphaltite: Part I–chemical composition. Petrol. Sci. Technol. 2017, 35, 1680–1686. [Google Scholar] [CrossRef]
- Abdullin, A.I.; Idrisov, M.R.; Emelyanycheva, E. Improvement of thermal-oxidative stability of petroleum bitumen using “overoxidation–dilution” technology and introduction of antioxidant additives. Petrol. Sci. Technol. 2017, 35, 1859–1865. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.X.; Jia, Z.; Wang, F.; Ding, L. Test method and material design of asphalt mixture with the function of photocatalytic decomposition of automobile exhaust. Constr. Build. Mater. 2019, 215, 298–309. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, J.; Jia, Z. The UV anti-aging performance of TPS modified bitumen. Petrol. Sci. Technol. 2018, 36, 1164–1169. [Google Scholar] [CrossRef]
- Hung, A.M.; Fini, E.H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel 2019, 242, 408–415. [Google Scholar] [CrossRef]
- Zhang, H.L.; Yu, J.Y.; Feng, Z.G.; Xue, L.H.; Wu, S.P. Effect of aging on the morphology of bitumen by atomic force microscopy. J. Microsc. 2012, 246, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Pang, L.; Mo, L.T.; Chen, Y.C.; Zhu, G.J. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Constr. Build. Mater. 2019, 23, 1005–1010. [Google Scholar] [CrossRef]
- Rashid, F.; Hossain, Z.; Bhasin, A. Nanomechanistic properties of reclaimed asphalt pavement modified asphalt binders using an atomic force microscope. Int. J. Pavement Eng. 2019, 20, 357–365. [Google Scholar] [CrossRef]
- Li, B.; Cui, Y.; Liu, X.; Li, H.; Li, X. Effect of material composition on nano-adhesive characteristics of styrene-butadiene-styrene copolymer-modified bitumen using atomic force microscope technology. Int. J. Adhes. Adhes. 2019, 89, 168–173. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Torres, A.; Lee, S.J.; Lee, M.S. Characterization of CRM binders with wax additives using an atomic force microscopy (AFM) and an optical microscopy. Adv. Civil Eng. Mater. 2017, 6, 504–525. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Abu-Qtaish, L.; Kaya, S.; Powers, D. Using atomic force microscopy to evaluate the nanostructure and nanomechanics of warm mix asphalt. J. Mater. Civil Eng. 2015, 27, 04015005. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Chen, Z.; Li, H. Microstructure morphologies of asphalt binders using atomic force microscopy. J. Wuhan Univ. Tech. Mater. Sci. Ed. 2016, 31, 1261–1266. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mouillet, V. The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Constr. Build. Mater. 2016, 114, 76–86. [Google Scholar] [CrossRef]
- Du, P.F.; Ke, N.X.; Zhang, H.L. Effect of nano-zinc oxide on the morphology and ultraviolet aging properties of various bitumens. Petrol. Sci. Technol. 2015, 33, 1110–1117. [Google Scholar] [CrossRef]
- Hofko, B.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; Handle, F.; Hospodka, M.; Grossegger, D.; Nahar, S.N.; Schmets, A.J.M.; Scarpas, A. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2016, 49, 829–841. [Google Scholar] [CrossRef]
- Hung, A.M.; Fini, E.H. AFM study of asphalt binder “bee” structures: Origin, mechanical fracture, topological evolution, and experimental artifacts. RSC Adv. 2015, 5, 96972–96982. [Google Scholar] [CrossRef]
- Dai, Z.; Shen, J.; Shi, P. Influence of SBS modification on the asphalt aging based on nano-sized topography and rheological properties. Acta Petrol. Sin. 2017, 33, 578–587. [Google Scholar] [CrossRef]
- Masson, J.F.; Leblond, V.; Margeson, J. Bitumen morphologies by phase-detection atomic force microscopy. J. Microsc. 2006, 221, 17–29. [Google Scholar] [CrossRef]
- Mansourkhaki, A.; Ameri, M.; Daryaee, D. Application of different modifiers for improvement of chemical characterization and physical-rheological parameters of reclaimed asphalt binder. Constr. Build. Mater. 2019, 203, 83–94. [Google Scholar] [CrossRef]
- RIOH. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011) Beijing; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Lu, H.; Ye, F.; Yuan, J.; Yin, W. Properties comparison and mechanism analysis of naphthenic oil/SBS and nano-MMT/SBS modified asphalt. Constr. Build. Mater. 2018, 187, 1147–1157. [Google Scholar] [CrossRef]
- Filippi, S.; Cappello, M.; Merce, M.; Polacco, G. Effect of nanoadditives on bitumen aging resistance: a critical review. J. Nanomater. 2018, 2018, 2469307. [Google Scholar] [CrossRef]
- Blom, J.; Soenen, H.; Katsiki, A.; Van den Brande, N.; Rahier, H.; Van den Bergh, W. Investigation of the bulk and surface microstructure of bitumen by atomic force microscopy. Constr. Build. Mater. 2018, 177, 158–169. [Google Scholar] [CrossRef]
- Teltayev, B.B.; Rossi, C.O.; Ashimova, S.Z. Composition and rheological characteristics of bitumen in short-term and long-term aging. Mag. Civil Eng. 2018, 81, 93–101. [Google Scholar] [CrossRef]
- Tarsi, G.; Varveri, A.; Lantieri, C.; Scarpas, A.; Sangiorgi, C. Effects of different aging methods on chemical and rheological properties of bitumen. J. Mater. Civil Eng. 2018, 30, 04018009. [Google Scholar] [CrossRef]
- Hofko, B.; Cannone Falchetto, A.; Grenfell, J.; Huber, L.; Lu, X.; Porot, L.; Poulikakos, L.D.; You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef]
- Loise, V.; Vuono, D.; Policicchio, A.; Teltayev, B.; Gnisci, A.; Messina, G.; Rossi, C.O. The effect of multiwalled carbon nanotubes on the rheological behaviour of bitumen. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 113–119. [Google Scholar] [CrossRef]
- Calandra, P.; Caputo, P.; De Santo, M.P.; Todaro, L.; Liveri, V.T.; Rossi, C.O. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2019, 199, 288–297. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, H.A.; Hsieh, Y.F. Image matting through a Web browser. Multimed. Tools Appl. 2012, 61, 551–570. [Google Scholar] [CrossRef]
- Han, B.; Lu, G.Y.; Zhu, Z.Q.; Guo, Y.J.; Zhao, Y.W. Microstructure features of powdery coal-bearing soil based on the digital image measurement technology and fractal theory. Geotech. Geol. Eng. 2019, 37, 1357–1371. [Google Scholar] [CrossRef]
- Vlahović, M.M.; Savić, M.M.; Martinović, S.P.; Boljanac, T.Đ.; Volkov-Husović, T.D. Use of image analysis for durability testing of sulfur concrete and Portland cement concrete. Mater. Des. 2012, 34, 346–354. [Google Scholar] [CrossRef]
- Wang, M.; Liu, L.P.; Luo, D. Analysis of nanoscale evolution features of microstructure of asphalt. China J. Highw. Transp. 2017, 30, 10–16. [Google Scholar] [CrossRef]
- Yang, J.; Gong, M.; Pauli, T.; Wei, J.; Wang, X. Study on micro-structures of asphalt by using atomic force microscopy. Acta Petrolei. Sin. 2015, 31, 959–965. [Google Scholar]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Liu, Q.; Xie, J.; Li, H.; Dai, Y.; Li, C.; Nie, S.; Song, W. Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polymer Testing 2019, 75, 64–75. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Lee, S.J. Micromorphology and rheology of warm binders depending on aging. J. Mater. Civil Eng. 2017, 29, 04017226. [Google Scholar] [CrossRef]
- Hou, Y.; Ji, X.; Su, X. Mechanical properties and strength criteria of cement-stabilised recycled concrete aggregate. Int. J. Pavement Eng. 2019, 20, 339–348. [Google Scholar] [CrossRef]
Test Items | Measured Value | Standard [32] | |
---|---|---|---|
Ductility at 10 °C, cm | 97.5 | ≮30 | |
Viscosity at 60 °C, Pa·s | 204.8 | ≮160 | |
Ductility at 15 °C, cm | >100 | ≮100 | |
Penetration at 25 °C, 0.1 mm | 86.6 | 80-100 | |
Density, g/cm3 | 0.998 | -- | |
Softening point, °C | 45.0 | ≯45 | |
TFOT | Residue Ductility at 15 °C, cm | 29.4 | ≮20 |
Quality loss, % | 0.1 | ±0.8 | |
Residue penetration ratio, % | 71.8 | ≮57% |
Test Conditions | Value |
---|---|
Scan size | 10 μm × 10 μm |
Temperature | 25 °C |
Samples number | 255 |
Scan rate | 2.5 Hz |
Drive amplitude | 300.00 mV |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zou, L.; Jia, Z.; Wang, F.; Li, Y.; Shi, P. Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Appl. Sci. 2019, 9, 3027. https://doi.org/10.3390/app9153027
Zhang W, Zou L, Jia Z, Wang F, Li Y, Shi P. Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Applied Sciences. 2019; 9(15):3027. https://doi.org/10.3390/app9153027
Chicago/Turabian StyleZhang, Wengang, Ling Zou, Zhirong Jia, Fang Wang, Ying Li, and Ping Shi. 2019. "Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen" Applied Sciences 9, no. 15: 3027. https://doi.org/10.3390/app9153027
APA StyleZhang, W., Zou, L., Jia, Z., Wang, F., Li, Y., & Shi, P. (2019). Effect of Thermo-Oxidative Ageing on Nano-Morphology of Bitumen. Applied Sciences, 9(15), 3027. https://doi.org/10.3390/app9153027