An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis
Abstract
:1. Introduction
2. Related Works
3. Network Structure
3.1. Semantic Analysis Network
3.2. Image Compression Network
3.3. Compressed Image with Semantic Map
4. Experiments
4.1. Traning Set
4.2. Visual Quality Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Venugopal, D.; Mohan, S.; Raja, S. An efficient block based lossless compression of medical images. Optik 2016, 127, 754–758. [Google Scholar] [CrossRef]
- Ferroukhi, M.; Ouahabi, A.; Attari, M.; Habchi, Y.; Taleb-Ahmed, A. Medical Video Coding Based on 2nd-Generation Wavelets: Performance Evaluation. Electronics 2019, 8, 88. [Google Scholar] [CrossRef]
- Murakami, T.; Suzuki, Y. Image Decoding Device and Method Thereof Using Inter-Coded Predictive Encoding Code. U.S. Patent No. 9,414,083, 9 August 2016. [Google Scholar]
- Woods, J.W.; O’Neil, S.D. Sub-band coding of images. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1278–1288. [Google Scholar] [CrossRef]
- Guo, L.J.; Ni, J.Q.; Shi, Y.Q. Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 2014, 9, 814–825. [Google Scholar] [CrossRef]
- Sikora, T. The MPEG-4 video standard verification model. IEEE Trans. Circuits Syst. Video Technol. 1997, 7, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.S.; Messali, Z.; Ouahabi, A.; Trepout, S.; Messaoudi, C.; Marco, S. Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images. Entropy 2015, 17, 3461–3478. [Google Scholar] [CrossRef] [Green Version]
- Ouahabi, A. A review of wavelet denoising in medical imaging. In Proceedings of the International Workshop on Systems, Signal Processing and their Applications (IEEE/WoSSPA) (2013), Algiers, Algeria, 12–15 May 2013; pp. 19–26. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 26th Advances in neural information processing systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the 2014 European Conference on Computer Vision (EVVC), Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Toderici, G.; O’Malley, S.M.; Hwang, S.J.; Vincent, D.; Minnen, D.; Baluja, S.; Covell, M.; Sukthankar, R. Variable Rate Image Compression with Recurrent Neural Networks. arXiv 2015, arXiv:1511.06085. [Google Scholar]
- Toderici, G.; Vincent, D.; Johnston, N.; Hwang, S.J.; Minnen, D.; Shor, J.; Covell, M. Full resolution image compression with recurrent neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5435–5443. [Google Scholar]
- Li, M.; Zuo, W.M.; Gu, S.H.; Zhao, D.B.; Zhang, D. Learning convolutional networks for content-weighted image compression. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3214–3223. [Google Scholar]
- Jiang, F.; Tao, W.; Liu, S.H.; Ren, J.; Guo, X.; Zhao, D.B. An end-to-end compression framework based on convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3007–3018. [Google Scholar] [CrossRef]
- Luo, S.H.; Yang, Y.Z.; Song, M.L. DeepSIC: Deep Semantic Image Compression. In Proceedings of the International Conference on Neural Information Processing (ICONIP) (2018), Siem Reap, Cambodia, 13–16 December 2018. [Google Scholar]
- Ma, S.W.; Zhang, X.; Jia, C.; Zhao, Z.; Wang, S.; Wanga, S. Image and Video Compression with Neural Networks: A Review. IEEE Trans. Circuits Syst. Video Technol. 2019. [Google Scholar] [CrossRef]
- Zhou, B.L.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2921–2929. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. Available online: http://arxiv.org/pdf/1511.06434.pdf (accessed on 7 January 2016).
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
- Griffin, G.; Holub, A.; Perona, P. Caltech-256 Object Category Dataset. Available online: https://authors.library.caltech.edu/7694/ (accessed on 8 May 2017).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features From Tiny Images; Technical Report; University of Toronto: Toronto, ON, Canada, 2009; Available online: http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 8 April 2009).
- Franzen, R. Kodak Lossless True Color Image Suite. Available online: http://r0k.us/graphics/kodak/ (accessed on 27 January 2013).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Han, Y.; Wang, W. An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis. Appl. Sci. 2019, 9, 3580. https://doi.org/10.3390/app9173580
Wang C, Han Y, Wang W. An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis. Applied Sciences. 2019; 9(17):3580. https://doi.org/10.3390/app9173580
Chicago/Turabian StyleWang, Cheng, Yifei Han, and Weidong Wang. 2019. "An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis" Applied Sciences 9, no. 17: 3580. https://doi.org/10.3390/app9173580
APA StyleWang, C., Han, Y., & Wang, W. (2019). An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis. Applied Sciences, 9(17), 3580. https://doi.org/10.3390/app9173580