Locating the Epidemic Source in Complex Networks with Sparse Observers
Abstract
:1. Introduction
2. Model and Method
2.1. Problem Definition
2.2. Locating the Epidemic Source in Tree Network
2.2.1. Infected Time Modeling
2.2.2. Parameter Estimation of S
2.3. Initial Time Range Confirmation
2.4. An Example in Tree Network
3. Experiments and Analysis
3.1. Source Localization Accuracy in Synthetic Networks
3.2. Parameter Estimation Accuracy
3.3. Algorithm Performance under Unknown Parameters
3.4. Source Localization Accuracy in Empirical Networks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prakash, B.A.; Vreeken, J.; Faloutsos, C.T. Spotting Culprits in Epidemics: How Many and Which Ones? In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012. [Google Scholar]
- Luo, W.; Tay, W.P.; Leng, M. Identifying Infection Sources and Regions in Large Networks. IEEE Trans. Signal Process. 2013, 61, 2850–2865. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.; Zaman, T. Rumor centrality: A universal source detector. ACM Sigmetrics Perform. Eval. Rev. 2012, 40, 199–210. [Google Scholar] [CrossRef]
- Zhu, K.; Ying, L. Information Source Detection in the SIR Model: A Sample Path Based Approach. IEEE/ACM Trans. Netw. 2012, 24, 408–421. [Google Scholar] [CrossRef]
- Fioriti, V.; Chinnici, M. Predicting the sources of an outbreak with a spectral technique. arXiv 2012, arXiv:1211.2333. [Google Scholar] [CrossRef]
- Zang, W.; Zhang, P.; Zhou, C. Locating multiple sources in social networks under the SIR model: A divide-and-conquer approach. J. Comput. Sci. 2015, 10, 278–287. [Google Scholar] [CrossRef]
- Pinto, P.C.; Thiran, P.; Vetterli, M. Locating the Source of Diffusion in Large-Scale Networks. Phys. Rev. Lett. 2012, 109, 068702. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Cao, S.; Wang, W.; Di, Z.; Stanley, H.E. Locating the source of diffusion in complex networks by time-reversal backward spreading. Phys. Rev. E 2016, 93, 32301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Zhao, C.; Zhang, X. Locating the source of spreading in temporal networks. Phys. A 2016, 468, 434–444. [Google Scholar] [CrossRef]
- Fu, L.; Shen, Z.; Wang, W.; Fan, Y.; Zengru, D.T. Multi-source localization on complex networks with limited observers. EPL 2016, 113, 18006. [Google Scholar] [CrossRef]
- Hu, Z.; Shen, Z.; Tang, C.; Xie, B.; Lu, J. Localization of diffusion sources in complex networks with sparse observations. Phys. Lett. A 2018, 382, 931–937. [Google Scholar] [CrossRef]
- Brockmann, D.; Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 2013, 342, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antulovfantulin, N.; Lancic, A.; Smuc, T. Identification of Patient Zero in Static and Temporal Networks—Robustness and Limitations. Phys. Rev. A. 2014, 114, 248701. [Google Scholar]
- Zheng, W.; Chaokun, W.; Jisheng, P. Multiple Source Detection without Knowing the Underlying Propagation Model. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Cai, K. Information spreading forensics via sequential dependent snapshots. IEEE/ACM Trans. Netw. 2018, 26, 478–491. [Google Scholar] [CrossRef]
- Vanhems, P. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 2013, 8, e73970. [Google Scholar] [CrossRef]
- Genois, M. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 2015, 3, 326–347. [Google Scholar] [CrossRef] [Green Version]
- Isella, L. What’s in a crowd? Analysis of face-to-face behavioral networkse. J. Theor. Biol. 2011, 271, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Mastr, R. Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 2015, 10, e0136497. [Google Scholar]
- Guimera, R. Self-similar community structure in a network of human interactions. PRE 2003, 68, 065103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H. Lethality and centrality in protein networks. Nature 2001, 411, 41. [Google Scholar] [CrossRef]
- Coulomb, S. Gene essentiality and the topology of protein interaction networks. Biol. Sci. 2005, 272, 1721–1725. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-D.J. Effect of sampling on topology predictions of protein-protein interaction networks. Nat. Biotechnol. 2005, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, M.P. Subnets of scale-free networks are not scalefree: Sampling properties of networks. Proc. Natl. Acad. Sci. USA 2005, 102, 4221–4224. [Google Scholar] [CrossRef] [PubMed]
- OpenFlights Network Dataset—KONECT. Available online: http://konect.uni-koblenz.de/networks/openflights (accessed on 2 September 2019).
- Sexual Escorts Network Dataset—KONECT. Available online: http://konect.unikoblenz.de/networks/escorts (accessed on 2 September 2019).
- Rocha, L.E. Information dynamics shape the sexual networks of Internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 2010, 107, 5706–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, W.; Zhang, P.; Zhou, C.; Guo, L. Discovering Multiple Diffusion Source Nodes in Social Networks. Int. Conf. Concept. Struct. 2014, 29, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Ji, F.; Tay, W.P. Multiple sources identification in networks with partial timestamps. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 638–642. [Google Scholar]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef] [Green Version]
- Holme, P. Modern temporal network theory: A colloquium. Eur. Phys. J. B 2015, 88, 1–30. [Google Scholar] [CrossRef]
MLE | a | b | c | d | e | f | g | h | i | j | k | i |
---|---|---|---|---|---|---|---|---|---|---|---|---|
−2 | −3 | −1 | 2 | −3 | 5 | 0 | 1 | −1 | −3 | −3 | ||
−5.69 | −5.94 | −5.69 | −6.84 | −8.02 | −11.58 | −27.90 | −2.89 | −3.12 | −3.67 | −4.38 | −4.38 |
Type | Name | N | M | H | |||
---|---|---|---|---|---|---|---|
Erdös-Rènyi Tree | ERT | 100 | 99 | 1.980 | 5 | 1.240 | 9.855 |
Barabási-Albert Tree | BAT | 100 | 99 | 1.980 | 22 | 2.372 | 4.945 |
Type | Name | N | M | H | ||||
---|---|---|---|---|---|---|---|---|
Contact | Hospital | 75 | 1139 | 30.373 | 61 | 1.244 | 1.598 | 0.640 |
Contact | Workplace | 92 | 755 | 16.413 | 44 | 1.213 | 1.964 | 0.426 |
Contact | ACM | 113 | 2196 | 38.867 | 98 | 1.223 | 1.656 | 0.535 |
Contact | School | 327 | 5818 | 35.584 | 87 | 1.144 | 2.159 | 0.504 |
Contact | Infectious | 410 | 2765 | 13.488 | 50 | 1.388 | 3.631 | 0.456 |
Communication | URV | 1133 | 5451 | 9.622 | 71 | 1.942 | 3.606 | 0.220 |
Biological | Yeast | 1458 | 1948 | 2.672 | 56 | 2.667 | 6.812 | 0.071 |
Transport | OpenFlights | 3397 | 19,230 | 11.322 | 248 | 5.699 | 4.103 | 0.488 |
Contact | Sex | 15,810 | 38,540 | 4.875 | 305 | 5.828 | 5.785 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, X.; Zhao, C.; Zhang, X.; Yi, D. Locating the Epidemic Source in Complex Networks with Sparse Observers. Appl. Sci. 2019, 9, 3644. https://doi.org/10.3390/app9183644
Li X, Wang X, Zhao C, Zhang X, Yi D. Locating the Epidemic Source in Complex Networks with Sparse Observers. Applied Sciences. 2019; 9(18):3644. https://doi.org/10.3390/app9183644
Chicago/Turabian StyleLi, Xiang, Xiaojie Wang, Chengli Zhao, Xue Zhang, and Dongyun Yi. 2019. "Locating the Epidemic Source in Complex Networks with Sparse Observers" Applied Sciences 9, no. 18: 3644. https://doi.org/10.3390/app9183644
APA StyleLi, X., Wang, X., Zhao, C., Zhang, X., & Yi, D. (2019). Locating the Epidemic Source in Complex Networks with Sparse Observers. Applied Sciences, 9(18), 3644. https://doi.org/10.3390/app9183644