Spin Qubits Confined to a Silicon Nano-Ridge
Abstract
:Featured Application
Abstract
1. Introduction
2. Silicon Nano-Ridge Qubit Device
2.1. Device Concept
2.2. Electrostatic Device Simulations
3. Technology Modules
3.1. Fabrication of the Silicon Nano-Ridge
3.2. Characterization of the Si/SiO2 Interface Quality
3.3. High-Density Spacer Gate Patterning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120. [Google Scholar] [CrossRef]
- Zwanenburg, F.A.; Dzurak, A.S.; Morello, A.; Simmons, M.Y.; Hollenberg, L.C.; Klimeck, G.; Rogge, S.; Coppersmith, S.N.; Eriksson, M.A. Silicon quantum electronics. Rev. Mod. Phys. 2013, 85, 961–1019. [Google Scholar] [CrossRef]
- Vandersypen, L.M.K.; Bluhm, H.; Clarke, J.S.; Dzurak, A.S.; Ishihara, R.; Morello, A.; Reilly, D.J.; Schreiber, L.R.; Veldhorst, M. Interfacing spin qubits in quantum dots and donors—Hot, dense, and coherent. Npj Quantum Inf. 2017, 3, 34. [Google Scholar] [CrossRef]
- Laucht, A.; Muhonen, J.T.; Mohiyaddin, F.A.; Kalra, R.; Dehollain, J.P.; Freer, S.; Hudson, F.E.; Veldhorst, M.; Rahman, R.; Klimeck, G.; et al. Electrically controlling single-spin qubits in a continuous microwave field. Sci. Adv. 2015, 1, e1500022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhonen, J.T.; Laucht, A.; Simmons, S.; Dehollain, J.P.; Kalra, R.; Hudson, F.E.; Freer, S.; Itoh, K.M.; Jamieson, D.N.; McCallum, J.C.; et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 2015, 27, 154205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, J.; Takeda, K.; Otsuka, T.; Nakajima, T.; Delbecq, M.R.; Allison, G.; Honda, T.; Kodera, T.; Oda, S.; Hoshi, Y.; et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelitiy higher than 99.9%. Nat. Nanotechnol. 2018, 13, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yang, C.H.; Chan, K.W.; Tanttu, T.; Hensen, B.; Leon, R.C.C.; Fogarty, M.A.; Hwang, J.C.C.; Hudson, F.E.; Itoh, K.M.; et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 2019, 569, 532–536. [Google Scholar] [CrossRef]
- Fowler, A.G.; Mariantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 2012, 86, 032324. [Google Scholar] [CrossRef]
- Veldhorst, M.; Yang, C.H.; Hwang, J.C.; Huang, W.; Dehollain, J.P.; Muhonen, J.T.; Simmons, S.; Laucht, A.; Hudson, F.E.; Itoh, K.M.; et al. A two-qubit logic gate in silicon. Nature 2015, 526, 410–414. [Google Scholar] [CrossRef]
- Watson, T.F.; Philips, S.G.J.; Kawakami, E.; Ward, D.R.; Scarlino, P.; Veldhorst, M.; Savage, D.E.; Lagally, M.G.; Friesen, M.; Coppersmith, S.N.; et al. A programmable two-qubit quantum processor in silicon. Nature 2018, 555, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Wild, A.; Kierig, J.; Sailer, J.; Ager, J.W.; Haller, E.E.; Abstreiter, G.; Ludwig, S.; Bougeard, D. Few electron double quantum dot in an isotopically purified 28Si quantum well. Appl. Phys. Lett. 2012, 100, 1–5. [Google Scholar] [CrossRef]
- Galy, P.; Camirand Lemyre, J.; Lemieux, P.; Arnaud, F.; Drouin, D.; Pioro-Ladrière, M. Cryogenic Temperature Characterization of a 28-nm FD-SOI Dedicated Structure for Advanced CMOS and Quantum Technologies Co-Integration. IEEE J. Electron Devices Soc. 2018, 6, 594–600. [Google Scholar] [CrossRef]
- Veldhorst, M.; Hwang, J.C.C.; Yang, C.H.; Leenstra, A.W.; de Ronde, B.; Dehollain, J.P.; Muhonen, J.T.; Hudson, F.E.; Itoh, K.M.; Morello, A.; et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinet, M.; Hutin, L.; Bertrand, B.; Bohuslavskyi, H.; Corna, A.; Amisse, A.; Crippa, A.; Bourdet, L.; Maurand, R.; Barraud, S.; et al. Towards scalable silicon quantum computing. In Proceedings of the 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 24–27 June 2018; pp. 1–2. [Google Scholar]
- Klos, J.; Hassler, F.; Cerfontaine, P.; Bluhm, H.; Schreiber, L.R. Calculation of tunnel couplings in open gate-defined disordered quantum dot systems. Phys. Rev. B 2018, 98, 155320. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, H.; Schreiber, L.R. Semiconductor Spin Qubits—A Scalable Platform for Quantum Computing? In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Zajac, D.M.; Hazard, T.M.; Mi, X.; Nielsen, E.; Petta, J.R. Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits. Phys. Rev. Appl. 2016, 6, 054013. [Google Scholar] [CrossRef] [Green Version]
- Zajac, D.M.; Hazard, T.M.; Mi, X.; Wang, K.; Petta, J.R. A reconfigurable gate architecture for Si/SiGe quantum dots. Appl. Phys. Lett. 2015, 106, 223507. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, E.; Scarlino, P.; Ward, D.R.; Braakman, F.R.; Savage, D.E.; Lagally, M.G.; Friesen, M.; Coppersmith, S.N.; Eriksson, M.a.; Vandersypen, L.M.K. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 2014, 9, 666–670. [Google Scholar] [CrossRef]
- Mi, X.; Péterfalvi, C.G.; Burkard, G.; Petta, J.R. High-resolution Valley Spectroscopy of Si Quantum Dots. Phys. Rev. Lett. 2017, 119, 176803. [Google Scholar] [CrossRef]
- Hollmann, A.; Struck, T.; Langrock, V.; Schidbauer, A.; Schauer, F.; Sawano, K.; Riemann, H.; Abrosimov, N.V.; Bougeard, D.; Schreiber, L.R. Large and tunable valley splitting in 28Si/SiGe quantum dots. arXiv 2019, arXiv:1907.04146. [Google Scholar]
- Yang, C.H.; Rossi, A.; Ruskov, R.; Lai, N.S.; Mohiyaddin, F.A.; Lee, S.; Tahan, C.; Klimeck, G.; Morello, A.; Dzurak, A.S. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 2013, 4, 2069. [Google Scholar] [CrossRef] [Green Version]
- Thorbeck, T.; Zimmerman, N.M. Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Adv. 2015, 5, 087107. [Google Scholar] [CrossRef] [Green Version]
- Voisin, B.; Nguyen, V.; Renard, J.; Jehl, X.; Barraud, S.; Triozon, F.; Vinet, M.; Duchemin, I.; Niquet, Y.M.; De Franceschi, S.; et al. Few-Electron Edge-State Quantum Dots in a Silicon Nanowire Field-Effect Transistor. Nano Lett. 2014, 14, 2094–2098. [Google Scholar] [CrossRef] [PubMed]
- Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; et al. A CMOS silicon spin qubit. Nat. Commun. 2016, 7, 13575. [Google Scholar] [CrossRef] [PubMed]
- Bohuslavskyi, H.; Kotekar-Patil, D.; Maurand, R.; Corna, A.; Barraud, S.; Bourdet, L.; Hutin, L.; Niquet, Y.M.; Jehl, X.; De Franceschi, S.; et al. Pauli blockade in a few-hole PMOS double quantum dot limited by spin-orbit interaction. Appl. Phys. Lett. 2016, 109, 193101. [Google Scholar] [CrossRef] [Green Version]
- Corna, A.; Bourdet, L.; Maurand, R.; Crippa, A.; Kotekar-Patil, D.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Jehl, X.; et al. Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot. Npj Quantum Inf. 2018, 4, 6. [Google Scholar] [CrossRef]
- Crippa, A.; Ezzouch, R.; Aprá, A.; Amisse, A.; Laviéville, R.; Hutin, L.; Bertrand, B.; Vinet, M.; Urdampilleta, M.; Meunier, T.; et al. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon. Nat. Commun. 2019, 10, 2776. [Google Scholar] [CrossRef] [PubMed]
- Betz, A.C.; Tagliaferri, M.L.V.; Vinet, M.; Broström, M.; Sanquer, M.; Ferguson, A.J.; Gonzalez-Zalba, M.F. Reconfigurable quadruple quantum dots in a silicon nanowire transistor. Appl. Phys. Lett. 2016, 108, 203108. [Google Scholar] [CrossRef]
- Liu, F.; Husain, M.K.; Li, Z.; Sotto, M.S.H.; Burt, D.; Fletcher, J.D.; Kataoka, M.; Tsuchiya, Y.; Saito, S. Transport properties in silicon nanowire transistors with atomically flat interfaces. In Proceedings of the IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, Japan, 28 February–2 March 2017; pp. 193–195. [Google Scholar]
- Tabata, O.; Asahi, R.; Funabashi, H.; Shimaoka, K.; Sugiyama, S. Anisotropic etching of silicon in TMAH solutions. Sens. Actuators Phys. 1992, 34, 51–57. [Google Scholar] [CrossRef]
- Jones, C.; Fogarty, M.A.; Morello, A.; Gyure, M.F.; Dzurak, A.S.; Ladd, T.D. Logical Qubit in a Linear Array of Semiconductor Quantum Dots. Phys. Rev. X 2018, 8, 021058. [Google Scholar] [CrossRef] [Green Version]
- Friesen, M.; Eriksson, M.A.; Coppersmith, S.N. Magnetic field dependence of valley splitting in realistic Si/SiGe quantum wells. Appl. Phys. Lett. 2006, 89, 202106. [Google Scholar] [CrossRef]
- Baart, T.A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K. Single-spin CCD. Nat. Nanotechnol. 2016, 11, 330–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, A.R.; Zajac, D.M.; Gullans, M.J.; Schupp, F.J.; Hazard, T.M.; Petta, J.R. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 2019, 10, 1063. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Hu, X. Spin qubit relaxation in a moving quantum dot. Phys. Rev. B 2013, 88, 075301. [Google Scholar] [CrossRef] [Green Version]
- COMSOL MULTIPHYSICS; Version 5.2; COMSOL AB: Stockholm, Sweden, 2015.
- Bludau, W.; Onton, A. Temperature dependence of the band gap of silicon. J. Appl. Phys. 1974, 45, 1846. [Google Scholar] [CrossRef]
- Pioro-Ladrière, M.; Obata, T.; Tokura, Y.; Shin, Y.-S.; Kubo, T.; Yoshida, K.; Taniyama, T.; Tarucha, S. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 2008, 4, 776. [Google Scholar] [CrossRef]
- Merlos, A.; Acero, M.; Bao, M.; Bausells, J.; Esteve, J. TMAH/IPA anisotropic etching characteristics. Sens. Actuators Phys. 1993, 37-38, 737–743. [Google Scholar] [CrossRef]
- Kemme, S. (Ed.) Microoptics and Nanooptics Fabrication; CRC Press: Boca Raton, FL, USA, 2010; p. 63. [Google Scholar]
- Fang, S.J.; Chen, W.; Yamanaka, T.; Helms, C.R. The Evolution of (001) Si/SiO2 Interface Roughness during Thermal Oxidation. J. Electrochem. Soc. 1997, 144, 2886–2893. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Vorst, C.; Carim, A. A Two-Step Oxidation Process to Improve the Electrical Breakdown Properties of Thin Oxides. J. Electrochem. Soc. 1985, 132, 1900–1903. [Google Scholar] [CrossRef]
- Hui, J.C.-H.; Chiu, T.-Y.; Wong, S.W.; Oldham, W. Sealed-Interface Local Oxidation Technology. IEEE J. Solid State Circuits 1982, 17, 184–191. [Google Scholar]
- Stasiak, J.; Batey, J.; Tierney, E.; Li, J. High-quality deposited gate oxide MOSFET’s and the importance of surface preparation. IEEE ELectron Device Lett. 1989, 10, 245–248. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; Wiley-Interscience: Hoboken, NJ, USA, 2002. [Google Scholar]
- Peacock, P.W.; Robertson, J. Effect of OH− on the low-frequency dielectric constant of vitreous silica. J. Appl. Phys. 1974, 45, 1071. [Google Scholar]
- Babayan, S.E.; Jeong, J.Y.; Schütze, A.; Tu, V.J.; Moravej, M.; Selwyn, G.S.; Hicks, R.F. Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet. Plasma Sources Sci. Technol. 2001, 10, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Ragnarsson, L.; Lundgren, P. Electrical characterization of Pb centers in (100)Si–SiO2 structures: The influence of surface potential on passivation during post metallization anneal. J. Appl. Phys. 2000, 88, 938. [Google Scholar] [CrossRef]
- Hiller, D.; Jordan, P.; Ding, K.; Pomaska, M.; Mikolajick, T.; König, D. Deactivation of silicon surface states by Al-induced acceptor states from Al–O monolayers in SiO2. J. Appl. Phys. 2019, 125, 015301. [Google Scholar] [CrossRef]
- Campbell, J.P.; Lenahan, P.M.; Krishnan, A.T.; Krishnan, S. Direct observation of the structure of defect centers involved in the negative bias temperature instability. Appl. Phys. Lett. 2005, 87, 204106. [Google Scholar] [CrossRef]
- Spruijtenburg, P.C.; Amitonov, S.V.; van der Wiel, W.G.; Zwanenburg, F.A. A fabrication guide for planar silicon quantum dot heterostructures. Nanotechnology 2018, 29, 143001. [Google Scholar] [CrossRef] [Green Version]
- Angus, S.J.; Ferguson, A.J.; Dzurak, A.S.; Clark, R.G. Gate-Defined Quantum Dots in Intrinsic Silicon. Nano Lett. 2007, 7, 2051–2055. [Google Scholar] [CrossRef]
- Peacock, P.W.; Robertson, J. Behavior of hydrogen in high dielectric constant oxide gate insulators. Appl. Phys. Lett. 2003, 83, 2025. [Google Scholar] [CrossRef]
- Edwards, A. Interaction of H and H2 with the silicon dangling orbital at the <111> Si/SiO2 interface. Phys. Rev. B 1991, 44, 1832. [Google Scholar]
- Nishi, Y.; Tanaka, K.; Ohwada, A. Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance II. Jpn. J. Appl. Phys. 1972, 11, 1. [Google Scholar] [CrossRef]
- Thoan, N.; Keunen, K.; Afanas’ev, V.V.; Stesmans, S. Interface state energy distribution and Pb defects at Si(110)/SiO2 interfaces: Comparison to (111) and (100) silicon orientations. J. Appl. Phys. 2011, 109, 013710. [Google Scholar] [CrossRef]
- Spruijtenburg, P.C.; Amitonov, S.V.; Mueller, F.; van der Wiel, W.G.; Zwanenburg, F.A. Passivation and characterization of charge defects in ambipolar silicon quantum dots. Sci. Rep. 2016, 6, 38127. [Google Scholar] [CrossRef]
- Entner, R. Modeling and Simulation of Negative Bias Temperature Instability: Degradation of Field-Effect Transistors. Ph.D. Thesis, Technische Universität Wien, Wien, Austria, 2007. [Google Scholar]
- Petit, L.; Boter, J.M.; Eenink, H.G.J.; Droulers, G.; Tagliaferri, M.L.V.; Li, R.; Franke, D.P.; Singh, K.J.; Clarke, J.S.; Schouten, R.N.; et al. Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits. Phys. Rev. Lett. 2018, 121, 076801. [Google Scholar] [CrossRef] [Green Version]
- Leon, R.C.C.; Yang, C.H.; Hwang, J.C.C.; Camirand Lemyre, J.; Tanttu, T.; Huang, W.; Chan, K.W.; Tan, K.Y.; Hudson, F.E.; Itoh, K.M.; et al. Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot. arXiv 2019, arXiv:1902.01550. [Google Scholar]
- Brauns, M.; Amitonov, S.V.; Spruijtenburg, P.C.; Zwanenburg, F.A. Palladium gates for reproducible quantum dots in silicon. Sci. Rep. 2018, 8, 5690. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klos, J.; Sun, B.; Beyer, J.; Kindel, S.; Hellmich, L.; Knoch, J.; Schreiber, L.R. Spin Qubits Confined to a Silicon Nano-Ridge. Appl. Sci. 2019, 9, 3823. https://doi.org/10.3390/app9183823
Klos J, Sun B, Beyer J, Kindel S, Hellmich L, Knoch J, Schreiber LR. Spin Qubits Confined to a Silicon Nano-Ridge. Applied Sciences. 2019; 9(18):3823. https://doi.org/10.3390/app9183823
Chicago/Turabian StyleKlos, J., B. Sun, J. Beyer, S. Kindel, L. Hellmich, J. Knoch, and L. R. Schreiber. 2019. "Spin Qubits Confined to a Silicon Nano-Ridge" Applied Sciences 9, no. 18: 3823. https://doi.org/10.3390/app9183823
APA StyleKlos, J., Sun, B., Beyer, J., Kindel, S., Hellmich, L., Knoch, J., & Schreiber, L. R. (2019). Spin Qubits Confined to a Silicon Nano-Ridge. Applied Sciences, 9(18), 3823. https://doi.org/10.3390/app9183823