Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussions
3.1. High Frequency Coherent Acoustic Phonon Combs
3.1.1. Generation and Detection Mechanisms
3.1.2. Overview of Experimental Results
3.1.3. Generation, Propagation and Detection of Acoustic Waves in MQW Region
3.1.4. Broadband Acoustic Spectrum
3.2. Low Frequency Mini-Brillouin-Zone Mode
3.2.1. Overview of Experimental Results
3.2.2. MBZ-Center Mode Excitation
3.2.3. MBZ-Edge Mode Excitation and Detection
3.2.4. Indications of Stimulated Subharmonic Decay of MBZ-Center Mode
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Complexity of Acoustic Spectrum
References
- Klein, M.V. Phonons in semiconductor superlattice. IEEE J. Quantum Electron. 1986, 22, 1760–1770. [Google Scholar] [CrossRef]
- Mante, P.-A.; Huang, Y.-R.; Yang, S.-C.; Liu, T.-M.; Maznev, A.A.; Sheu, J.-K.; Sun, C.-K. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures. Ultrasonics 2015, 56, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale Thermal Transport. J. Appl. Phys. 2003, 93, 793–818. [Google Scholar] [CrossRef]
- Lanzillotti-Kimura, N.D.; Fainstein, A.; Huynh, A.; Perrin, B.; Jusserand, B.; Miard, A.; Lemaitre, A. Coherent generation of acoustic phonons in an optical microcavity. Phys. Rev. Lett. 2007, 99, 217405:1–217405:4. [Google Scholar] [CrossRef]
- Maryam, W.; Akimov, A.V.; Campion, R.P.; Kent, A.J. Dynamics of a vertical cavity quantum cascade phonon laser structure. Nat. Commun. 2013, 4, 3184:1–3184:6. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Hase, M.; Nakashima, S. Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy. Phys. Rev. B 1999, 60, 8262–8266. [Google Scholar] [CrossRef]
- Ruello, P.; Gusev, V.E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 2015, 56, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Gusev, V.E.; Karabutov, A.A. Laser Optoacoustics; AIP Press: New York, NY, USA, 1993; ISBN 1-56396-036-2. [Google Scholar]
- Bartels, A.; Dekorsy, T.; Kurz, H. Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: Excitation and detection. Phys. Rev. Lett. 1999, 82, 1044–1047. [Google Scholar] [CrossRef]
- Shinokita, K.; Reimann, K.; Woerner, M.; Elsaesser, T.; Hey, R.; Flytzanis, C. Strong amplification of coherent acoustic phonons by intraminiband currents in a semiconductor superlattice. Phys. Rev. Lett. 2016, 116, 075504:1–075504:5. [Google Scholar] [CrossRef]
- Villafañe, V.; Sesin, P.; Soubelet, P.; Anguiano, S.; Bruchhausen, A.E.; Rozas, G.; Gomez Carbonell, C.; Lemaître, A.; Fainstein, A. Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities. Phys. Rev. B 2018, 97, 195306:1–195306:8. [Google Scholar] [CrossRef]
- Jusserand, B.; Poddubny, A.N.; Poshakinskiy, A.V.; Fainstein, A.; Lemaitre, A. Polariton Resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells. Phys. Rev. Lett. 2015, 115, 267402:1–267402:5. [Google Scholar] [CrossRef]
- Tanaka, H.; Sonehara, T.; Takagi, S. A new phase-coherent light scattering method: First observation of complex Brillouin spectra. Phys. Rev. Lett. 1997, 79, 881–884. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yang, J.C.; Luo, C.W.; Laing, C.W.; Wu, K.H.; Lin, J.-Y.; Uen, T.M.; Juang, J.Y.; Chu, Y.H.; Kobayashi, T. Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 2012, 101, 041902:1–041902:4. [Google Scholar] [CrossRef]
- Jusserand, B.; Cardona, M. Raman spectroscopy of vibrations in superlattice. In Light Scattering in Solids V, 1st ed.; Cardona, M., Güntherodt, G., Eds.; Springer: Berlin, Germany, 1989; Volume 66, pp. 86–90. ISBN 3-540-50400-1. [Google Scholar]
- Mizoguchi, K.; Hino, T.; Nakayama, M.; Dekorsy, T.; Bartels, A.; Kurz, H.; Nakashima, S. Umklapp process in observation of coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice. Phys. E Low Dimens. Syst. Nanostruct. 2004, 21, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Bruchhausen, A.; LIoyd-Hughes, J.; Hettich, M.; Gebs, R.; Grossmann, M.; Ristow, O.; Bartels, A.; Fischer, M.; Beck, M.; Scalari, G.; et al. Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy. J. Appl. Phys. 2012, 112, 033517:1–033517:8. [Google Scholar] [CrossRef]
- Beardsley, R.; Akimov, A.V.; Glavin, B.A.; Maryam, W.; Henini, M.; Kent, A.J. Optical detection of folded mini-zone-edge coherent acoustic modes in a doped GaAs/AlAs superlattice. Phys. Rev. B 2010, 82, 041302:1–041302:4. [Google Scholar] [CrossRef]
- Ruf, T.; Belitsky, V.I.; Spitzer, J.; Sapega, V.F.; Cardona, M.; Ploog, K. Raman scattering from folded phonon dispersion gaps. Phys. Rev. Lett. 1993, 71, 3035–3038. [Google Scholar] [CrossRef] [PubMed]
- Sapriel, J.; Chavignon, J.; Alexandre, F.; Azoulay, R. Leakage-induced and disorder-activated modes from the folded acoustic branches in GaAs-AlAs superlattice. Phys. Rev. B 1986, 34, 7118–7122. [Google Scholar] [CrossRef]
- Matsubara, E.; Inoue, K.; Hanamura, E. Violation of Raman selection rules induced by two femtosecond laser pulses in KTaO3. Phys. Rev. B 2005, 72, 134101:1–134101:5. [Google Scholar] [CrossRef]
- Matsubara, E.; Inoue, K.; Hanamura, E. Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3. J. Phys. Soc. Jpn. 2006, 75, 024712:1–024712:7. [Google Scholar] [CrossRef]
- Inoue, K.; Kato, J.; Hanamura, E.; Matsuki, H.; Matsubara, E. Broadband coherent radiation based on peculiar multiple Raman scattering by laser-induced phonon gratings in TiO2. Phys. Rev. B 2007, 76, 041101:1–041101:4. [Google Scholar] [CrossRef]
- Hanamura, E.; Kato, J.; Inoue, K.; Tanabe, Y. Multistep anti-stokes Raman scattering by coherent gratings of Brillouin zone edge phonons. J. Phys. Soc. Jpn. 2008, 77, 034401:1–034401:7. [Google Scholar] [CrossRef]
- Li, C.; Krauß, N.; Schäfer, G.; Ebner, L.; Kliebisch, O.; Schmidt, J.; Winnerl, S.; Hettich, M.; Dekorsy, T. High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators. Opt. Express 2017, 25, 9204–9212. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S. GaAs and Related Materials: Bulk Semiconductiong and Superlattice Properties; World Scientific: Singaore, 1994; ISBN 981-02-1925-3. [Google Scholar]
- Levinshtein, M.E.; Rumyantsev, S.L. Gallium arsenide. In Handbook Series on Semiconductor Parameters; Levinshtein, M.E., Rumyantsev, S.L., Shur, M., Eds.; World Scientific: Singapore, 1996; Volume 1, pp. 77–103. ISBN 981-02-1420-0. [Google Scholar]
- Adachi, S. Physical Properties of III-V Semiconductor Compounds; WILEY-VCH GmbH & Co. KGaA: Weinheim, Germany, 2004; Chapter 2; pp. 4–16. ISBN 978-0-471-57329-6. [Google Scholar]
- Wemple, S.H.; DiDomenico, M., Jr. Behaviour of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 1971, 3, 1338–1351. [Google Scholar] [CrossRef]
- Engelbrecht, J.A.A. An assessment of some theoretical models used for the calculation of the refractive index of InXGa1−xAs. Phys. B 2018, 535, 8–12. [Google Scholar] [CrossRef]
- Optical and Electrical Investigations on GaAs-Based Phototransistors. Available online: https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.140/Jahresbericht/2014/UUlm-Opto-AR2014_SV.pdf (accessed on 16 November 2018).
- Nahory, R.E.; Pollack, M.A.; Johnston, W.D., Jr.; Barns, R.L. Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Appl. Phys. Lett. 1978, 33, 659–661. [Google Scholar] [CrossRef]
- Golderg, Y.A.; Shmidt, N.M. Gallium indium arsenide. In Handbook Series on Semiconductor Parameters; Levinshtein, M.E., Rumyantsev, S.L., Shur, M., Eds.; World Scientific: Singapore, 1996; Volume 2, pp. 62–88. ISBN 981-02-2935-6. [Google Scholar]
- Adachi, S. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications. J. Appl. Phys. 1985, 58, R1–R29. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Kelso, S.M.; Logan, R.A.; Bhat, R. Optical properties of AlxGa1-xAs. J. Appl. Phys. 1986, 60, 754–767. [Google Scholar] [CrossRef]
- Golderg, Y.A. Aluminium gallium arsenide. In Handbook Series on Semiconductor Parameters; Levinshtein, M.E., Rumyantsev, S.L., Shur, M., Eds.; World Scientific: Singapore, 1996; Volume 2, pp. 1–36. ISBN 981-02-2935-6. [Google Scholar]
- Yu, P.Y.; Cardona, M. Effect of quantum confinement on electrons and phonons in semiconductors. In Fundamentals of Semiconductors, 4th ed.; Stanley, H.E., Rhodes, W.T., Eds.; Springer: Berlin, Germany, 2010; pp. 469–551. ISBN 978-3-642-00709-5. [Google Scholar]
- Smith, D.L. Strain-generated electric fields in [111] growth axis strained-layer superlattices. Solid State Commun. 1986, 57, 919–921. [Google Scholar] [CrossRef]
- Ishioka, K.; Rustagi, A.; Höfer, U.; Petek, H.; Stanton, C.J. Intrinsic coherent acoustic phonons in the indirect band gap semiconductors Si and GaP. Phys. Rev. B 2017, 95, 035205:1–035205:9. [Google Scholar] [CrossRef]
- Li, C.; Gusev, V.; Hettich, M.; Dekorsy, T. Optically manipulated coherent acoustic phonons by tunable time delay and pump power in a two-pulse-pump ASOPS system. Manuscript in preparation.
- Rytov, S. Acoustical properties of a thinly laminated medium. Sov. Phys. Acoust. 1956, 2, 68–80. [Google Scholar]
- Pinczuk, A.; Abstreiter, G. Spectroscopy of free carriers excitations in semiconductor quantum wells. In Light Scattering in Solids V; Cardona, M., Güntherodt, G., Eds.; Springer: Berlin, Germany, 1989; Volume 66, pp. 153–207. ISBN 3-540-50400-1. [Google Scholar]
- Milonni, P.W.; Eberly, J.H. Lasers; John Wiley & Sons: New York, NY, USA, 1988; ISBN 978-0-471-62731-9. [Google Scholar]
- Thomsen, C.; Grahn, H.T.; Maris, H.J.; Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 1986, 34, 4129–4137. [Google Scholar] [CrossRef]
Laser | Central Wavelength λ0 (nm) | Bandwidth Δλ (nm)/ΔE (meV) | Pulse Width Δτ (fs) | Output Power P (mW) | Repetition Rate frep | Photon Energy Ep (eV) |
---|---|---|---|---|---|---|
Pump laser | 1047.5 | 5.1/6 | 210 | 260 | 1 GHz + 5 kHz | 1.184 |
Probe laser | 1048.3 | 5.9/7 | 280 | 310 | 1 GHz | 1.183 |
Material | Refractive Index n | Extinction Coefficient K | Energy Gap Eg (eV) | Acoustic Velocity v (m/s) | Density ρ (g/cm3) |
---|---|---|---|---|---|
GaAs | 3.48 [26] | 0 (α = 7.4 × 10−3 cm−1) [26] | 1.424 [27] | 4730 [27] | 5.317 [28] |
In0.27Ga0.73As | 3.60 [29,30] | 0.028 (α = 3.4 × 103 cm−1) [31] | 1.052 [32] (1.177 quantization) | 4487 [33] | 5.410 [33] |
Al0.95Ga0.05As | 2.98 [34] | 0 [35] | 2.148 [26] | 5592 [36] | 3.838 [36] |
DBR (GaAs/Al0.95Ga0.05As) | 3.22 [37] | 5160 [37] | |||
QW-heterostructures (GaAs/In0.27Ga0.73As) | 3.54 [37] | 4596 [37] |
Experiment | Calculation MQWs | Calculation InGaAs/GaAs SL [37,41,42] | |||||
---|---|---|---|---|---|---|---|
f0 (GHz) | Comb (GHz) | f0 (GHz) | Comb (GHz) | fc, fe (GHz) | f2q (k = 2qprobe) (0.176π/dQW) | ||
366.5 | 299.9 | 633.0 | 353.5 | 293.4 | 619.4 | k = π/dQW L 1 175.5 U 1 179.4 | Lowest 31.2 |
∆B (GHz) | 332.1 | 666.1 | ∆B (GHz) | 326.0 | 652.0 | k = 0 L 354.7 U 355.3 | p = −1 323.7 p = +1 386.2 |
109.6 | 364.6 | 700.1 | 86.9 (G 2) 124 (R 2) | 358.6 | 684.6 | k = π/dQW L 530.5 U 534.3 | |
∆f (GHz) | 397.1 | 732.0 | ∆f (GHz) | 391.2 | 717.2 | k = 0 L 709.3 U 710.6 | p = −2 678.7 p = +2 741.2 |
32.6, 33.3 | 430.3 | 766.0 | 32.6 | 423.8 | 749.8 | k = π/dQW L 885.7 U 889.3 |
Experiment | Calculation DBR [41,42] (dDBR = 160.4 nm) | Calculation SL Formed by QW Stacks and Spacers (dMQW-SL = 145 nm) | Calculation Brillouin Frequency [44] | |||
---|---|---|---|---|---|---|
fc, fe (GHz) | ∆B (GHz) | fc, fe (GHz) | f2k (GHz) (k = 2qprobe) (0.028π/dDBR) | fc, fe (GHz) | f2k (GHz) k = 2qprobe (0.06π/dMQW_SL) | fB in GaAs (GHz) |
15.1 | 2.1 | k = π/dDBR L 15.28 U 16.90 | Lowest 0.65 | k = π/dDBR 16.20 | Lowest 1.02 | 31.4 |
32.0 | 2.2 | k = 0 L 32.17 U 32.18 | p = −1 31.56 p = +1 32.53 | q = 0 L 32.40 U 32.41 | p = −1 31.20 p = +1 33.54 | fB in In0.27Ga0.73As (GHz) |
- | - | k = π/dDBR L 47.45 U 49.07 | k = π/dDBR 48.61 | 30.8 | ||
63.1 | 2.2 | k = 0 L 64.33 U 64.35 | p = −2 63.82 p = +2 64.68 | k = 0 L 64.808 U 64.814 | p = −2 63.67 p = +2 65.86 | fB inAl0.95Ga0.05As (GHz) |
78.3 | 3.4 | k = π/dDBR L 79.62 U 81.24 | k = π/dDBR L 81.01 U 81.02 | 31.8 | ||
95.1 | 2.2 | k = 0 L 96.50 U 96.53 | p = −3 95.97 p = +3 96.94 | k = 097.22 | p = −3 96.18 p = +3 98.23 | |
110.1 | 1.8 | k = π/dSL L 111.80 U 113.40 | k = π/dSL L 113.41 U 113.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gusev, V.; Dimakis, E.; Dekorsy, T.; Hettich, M. Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure. Appl. Sci. 2019, 9, 289. https://doi.org/10.3390/app9020289
Li C, Gusev V, Dimakis E, Dekorsy T, Hettich M. Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure. Applied Sciences. 2019; 9(2):289. https://doi.org/10.3390/app9020289
Chicago/Turabian StyleLi, Changxiu, Vitalyi Gusev, Emmanouil Dimakis, Thomas Dekorsy, and Mike Hettich. 2019. "Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure" Applied Sciences 9, no. 2: 289. https://doi.org/10.3390/app9020289
APA StyleLi, C., Gusev, V., Dimakis, E., Dekorsy, T., & Hettich, M. (2019). Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure. Applied Sciences, 9(2), 289. https://doi.org/10.3390/app9020289