The Effect of Patellar Tendon Release on the Characteristics of Patellofemoral Joint Squat Movement: A Simulation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Establishment of a Finite Element Model
2.2. The Establishment of a Coordinate System for the Knee Joint’s Motion
2.3. Loading Conditions and the Setting of Material Properties
3. Results
3.1. Medial-Lateral Shift and Flexion of Patella Along the Inner and Outer Axes
3.2. Superior-Inferior Shift and Medial-Lateral Rotation of the Patella Along Its Upper and Lower Axes
3.3. Anterior-Posterior Shift and Medial-Lateral Tilt of Patella Along the Anteroposterior Axis
4. Discussion
4.1. Medial-Lateral Shift and Flexion of the Patella
4.2. Superior-Inferior Shift and Medial-Lateral Rotation of Patella
4.3. Anterior-Posterior Shift and Medial-Lateral Tilt of the Patella
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adravanti, P.; Tecame, A.; De Girolamo, L.; Ampollini, A.; Papalia, R. Patella Resurfacing in Total Knee Arthroplasty: A Series of 1280 Patients at Midterm Follow-Up. J. Arthroplast. 2018, 33, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Chonko, D.J.; Lombardi, A.V.; Berend, K.R. Patella baja and total knee arthroplasty (TKA): Etiology, diagnosis, and management. Surg. Technol. Int. 2004, 12, 231–238. [Google Scholar] [PubMed]
- Ali, S.A.; Helmer, R.; Terk, M.R. Patella Alta: Lack of Correlation Between Patellotrochlear Cartilage Congruence and Commonly Used Patellar Height Ratios. J. Am. Roentgenol. 2009, 193, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Arai, Y.; Inoue, H.; Atsumi, S.; Ichimaru, S.; Ikoma, K.; Fujiwara, H.; Kubo, T. Two Patients with Osteochondral Injury of the Weight-Bearing Portion of the Lateral Femoral Condyle Associated with Lateral Dislocation of the Patella. Case Rep. Orthop. 2014, 2014, 876410. [Google Scholar] [CrossRef] [PubMed]
- Chougule, S.S.; Stefanakis, G.; Stefan, S.C.; Rudra, S.; Tselentakis, G. Effects of fat pad excision on length of the patellar tendon after total knee replacement. J. Orthop. 2015, 12, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Weale, A.E.; Murray, D.W.; Newman, J.H.; Ackroyd, C.E. The length of the patellar tendon after unicompartmental and total knee replacement. Bone Jt. J. 1999, 81, 790–795. [Google Scholar] [CrossRef]
- Davies, G.S.; Van Duren, B.; Shorthose, M.; Roberts, P.G.; Morley, J.R.; Monk, A.P. Changes in patella tendon length over 5 years after different types of knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3029–3035. [Google Scholar] [CrossRef]
- FlORen, M.; Davis, J.; Peterson MG, E.; Laskin, R.S. A mini-midvastus capsular approach with patellar displacement decreases the prevalence of patella baja. J. Arthroplast. 2007, 22, 51–57. [Google Scholar] [CrossRef]
- Meneghini, R.M.; Ritter, M.A.; Pierson, J.L.; Meding, J.B.; Berend, M.E.; Faris, P.M. The effect of the Insall-Salvati ratio on outcome after total knee arthroplasty. J. Arthroplast. 2006, 21, 116–120. [Google Scholar] [CrossRef]
- Kazemi, S.M.; Daftari, B.L.; Eajazi, A.; Miniator Sajadi, M.R.; Okhovatpoor, M.A.; Farhang, Z.R. Pseudo-patella baja after total knee arthroplasty. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, CR292. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Steadman, J.R.; Millett, P.J.; Hydeman, K.; Close, M. Lysis of Pretibial Patellar Tendon Adhesions (Anterior Interval Release) to Treat Anterior Knee Pain After ACL Reconstruction; Springer: London, UK, 2006. [Google Scholar]
- Seo, J.G.; Moon, Y.W.; Kim, S.M.; Park, S.H.; Lee, B.H.; Chang, M.J.; Jo, B.C. Prevention of pseudo-patella baja during total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3601–3606. [Google Scholar] [CrossRef] [PubMed]
- Bugelli, G.; Ascione, F.; Cazzella, N.; Franceschetti, E.; Franceschi, F.; Dell’Osso, G.; Giannotti, S. Pseudo-patella baja: A minor yet frequent complication of total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017, 26, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-P.; Qian, L.-W.; Wang, C.-T. Simulation of Geometric Anatomy Model of Human Knee Joint. J. Syst. Simul. 2009, 21, 2806–2809. [Google Scholar]
- Matava, M.J.; Hutton, W.C. A biomechanical comparison between the central one-third patellar tendon and the residual tendon. Br. J. Sports Med. 1995, 29, 178–184. [Google Scholar] [CrossRef]
- Mansson, O.; Sernert, N.; Rostgard-Christensen, L.; Kartus, J. Long-term clinical and radiographic results after delayed anterior cruciate ligament reconstruction in adolescents. Am. J. Sports Med. 2015, 43, 138–145. [Google Scholar] [CrossRef]
- George, D.S.L.M.; Pampolha, A.G.M.; Orlando Junior, N. Functional results from reconstruction of the anterior cruciate ligament using the central third of the patellar ligament and flexor tendons. Rev. Bras. Ortop. (Engl. Ed.) 2015, 50, 705–711. [Google Scholar]
- Haviv, B.; Yassin, M.; Rath, E.; Bronak, S. Prevalence and clinical implications of nerve injury during bone patellar tendon bone harvesting for anterior cruciate ligament reconstruction. J. Orthop. Surg. 2017, 25, 230949901668498. [Google Scholar] [CrossRef]
- Wang, J.; Tao, K.; Li, H.; Wang, C. Modelling and analysis on biomechanical dynamic characteristics of knee flexion movement under squatting. Sci. World J. 2014, 2014, 321080. [Google Scholar]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Li, G.; Most, E.; Otterberg, E.; Sabbag, K.; Zayontz, S.; Johnson, T.; Rubash, H. Biomechanics of Posterior-Substituting Total Knee Arthroplasty: An In Vitro Study. Clin. Orthop. Relat. Res. 2002, 404, 214–225. [Google Scholar] [CrossRef]
- Godest, A.C.; Beaugonin, M.; Haug, E.; Taylor, M. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 2002, 35, 267–275. [Google Scholar] [CrossRef]
- Taylor, M.; Barrett, D.S. Explicit finite element simulation of eccentric loading in total knee replacement. Clin. Orthop. Relat. Rec 2003, 414, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Pena, E.; Calvo, B.; Martinez, M.A.; Doblare, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 2006, 39, 1686–1701. [Google Scholar] [CrossRef] [PubMed]
- Halloran, J.P.; Petrella, A.J.; Rullkoetter, P.J. Explicit finite element modeling of total knee replacement mechanics. J. Biomech. 2005, 38, 323–331. [Google Scholar] [CrossRef]
- Bustince, H.; Fernandez, J.; Burillo, P. Penalty Function in Optimization Problems: A Review of Recent Developments; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tang, T.S.; MacIntyre, N.J.; Gill, H.S.; Fellows, R.A.; Hill, N.A.; Wilson, D.R. Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques. Med. Image Anal. 2004, 8, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Fellows, R.A.; Hill, N.A.; Gill, H.S.; MacIntyre, N.J.; Harrison, M.M.; Ellis, R.E.; Wilson, D.R. Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking. J. Biomech. 2005, 38, 1643–1652. [Google Scholar] [CrossRef]
- Baldwin, M.A.; Clary, C.; Maletsky, L.P.; Rullkoetter, P.J. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J. Biomech. 2009, 42, 2341–2348. [Google Scholar] [CrossRef]
- Heegaard, J.; Leyvraz, P.F.; Curnier, A.; Rakotomanana, L.; Huiskes, R. The biomechanics of the human patella during passive knee flexion. J. Biomech. 1995, 28, 1265–1279. [Google Scholar] [CrossRef] [Green Version]
- Azmy, C.; Guerard, S.; Bonnet, X.; Gabrielli, F.; Skalli, W. EOS (R) orthopaedic imaging system to study patellofemoral kinematics: Assessment of uncertainty. Orthop. Traumatol. Surg. Res. 2010, 96, 28–36. [Google Scholar] [CrossRef]
- McWalter, E.J.; Hunter, D.J.; Wilson, D.R. The effect of load magnitude on three-dimensional patellar kinematics in vivo. J. Biomech. 2010, 43, 1890–1897. [Google Scholar] [CrossRef]
- Amis, A.A.; Senavongse, W.; Bull, A.M.J. Patellofemoral kinematics during knee flexion-extension: An in vitro study. J. Orthop. Res. 2006, 24, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Testa, R. Knee rotational laxity and proprioceptive function 2A years after partial ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 762–766. [Google Scholar]
- Gokeler, A.; Benjaminse, A.; Hewett, T.E.; Lephart, S.M.; Engebretsen, L.; Ageberg, E.; Dijkstra, P.U. Proprioceptive deficits after ACL injury: Are they clinically relevant? Br. J. Sports Med. 2012, 46, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.K.; Howell, S.M.; Hull, M.L. Anterior laxity, slippage, and recovery of function in the first year after tibialis allograft anterior cruciate ligament reconstruction. Am. J. Sports Med. 2011, 39, 78. [Google Scholar] [CrossRef]
- Tianqu, H. Finite Element Analysis of the Influence of Femoral Tunnel Locating Points on the Isometricity of Grafts in Anterior Cruciate Ligament Reconstruction. Master’s Thesis, Central South University, Changsha, China, 24 May 2014. [Google Scholar]
- Laprade, C.M.; Civitarese, D.M.; Rasmussen, M.T.; Laprade, R.F. Emerging Updates on the Posterior Cruciate Ligament: A Review of the Current Literature. Am. J. Sports Med. 2015, 0363546515572770. [Google Scholar] [CrossRef]
- Narvy, S.J.; Pearl, M.; Vrla, M.; Yi, A.; Hatch, G.F.R. Anatomy of the Femoral Footprint of the Posterior Cruciate Ligament: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 345–354. [Google Scholar] [CrossRef]
- Tucker, A.; Mcmahon, S.; Mcardle, B.; Rutherford, B.; Acton, D. Synthetic versus autologous reconstruction (Syn-VAR) of the medial patellofemoral ligament: A study protocol for a randomised controlled trial. Trials 2018, 19, 268. [Google Scholar] [CrossRef]
- Balcarek, P.; Rehn, S.; Howells, N.R.; Eldridge, J.D.; Kita, K.; Dejour, D.; Friede, T. Results of medial patellofemoral ligament reconstruction compared with trochleoplasty plus individual extensor apparatus balancing in patellar instability caused by severe trochlear dysplasia: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2016, 25, 3869–3877. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, Y.; Guo, D.; Wang, S.; Fu, L.; Li, Y. The Effect of Patellar Tendon Release on the Characteristics of Patellofemoral Joint Squat Movement: A Simulation Analysis. Appl. Sci. 2019, 9, 4301. https://doi.org/10.3390/app9204301
Wang J, Yang Y, Guo D, Wang S, Fu L, Li Y. The Effect of Patellar Tendon Release on the Characteristics of Patellofemoral Joint Squat Movement: A Simulation Analysis. Applied Sciences. 2019; 9(20):4301. https://doi.org/10.3390/app9204301
Chicago/Turabian StyleWang, Jianping, Yongqiang Yang, Dong Guo, Shihua Wang, Long Fu, and Yu Li. 2019. "The Effect of Patellar Tendon Release on the Characteristics of Patellofemoral Joint Squat Movement: A Simulation Analysis" Applied Sciences 9, no. 20: 4301. https://doi.org/10.3390/app9204301
APA StyleWang, J., Yang, Y., Guo, D., Wang, S., Fu, L., & Li, Y. (2019). The Effect of Patellar Tendon Release on the Characteristics of Patellofemoral Joint Squat Movement: A Simulation Analysis. Applied Sciences, 9(20), 4301. https://doi.org/10.3390/app9204301