Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes
Abstract
:1. Introduction
2. The Principle of the Invariant Imbedding (IIM) T-Matrix Method
2.1. A Brief Introduction of the T-Matrix
2.2. Discretization and Vectorization of the Helmholtz Volume Integral Equation
2.3. T-Matrix Computation Based on the Invariant Embedding Technique
2.4. Iterative Acceleration Based on the Lorenz–Mie Theory
3. Model Validation and Results Analysis
3.1. Small Spheroidal Particle Case
3.2. Large Spheroidal Particle Case
3.3. Cylindrical Particle Case
3.4. Inhomogeneous Particle Case
3.5. Hexagonal Prism Case
4. Analysis of Modeling Efficiency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liou, K.-N.; Yang, P. Light Scattering by Ice Crystals; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Liou, K.N. An Introduction to Atmospheric Radiation; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Zhang, F.; Wu, K.; Li, J.; Yang, Q.; Zhao, J.-Q.; Li, J. Analytical infrared delta-four-stream adding method from invariance principle. J. Atmos. Sci. 2016, 73, 4171–4188. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J. Doubling–adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J. Atmos. Sci. 2013, 70, 3084–3101. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Hu, Y.-Q. Bridging technique for calculating the extinction efficiency of arbitrary shaped particles. Appl. Opt. 2003, 42, 4937–4945. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Shi, G.; Chen, H.; Cheng, G. Approximation of scattering phase function of particles. Adv. Atmos. Sci. 2006, 23, 802–808. [Google Scholar] [CrossRef]
- Zhao, J.-Q. Simple technique to evaluate effects of nonsphericity and orientation on particle size distribution retrieval. Int. J. Phys. Sci. 2011, 6, 7100–7105. [Google Scholar]
- Curtis, D.B.; Meland, B.; Aycibin, M. A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm. J. Geophys. Res. 2008, 113, D08210. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Munoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Goloub, P.; Herman, M.; Marchand, A.; Perry, G. Estimate of the aerosol properties over the ocean with polder. J. Geophys. Res. 2000, 105, 15329–15346. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from polder-adeos-1 polarized measurements. J. Geophys. Res. 2001, 106, 4913–4926. [Google Scholar] [CrossRef]
- Sun, W.; Videen, G.; Fu, Q.; Hu, Y. Scattered-field fdtd and pstd algorithms with cpml absorbing boundary conditions for light scattering by aerosols. J. Quant. Spectrosc. Radiat. Transf. 2013, 131, 166–174. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis Larry, D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. 1997, 102, 16989–17014. [Google Scholar] [CrossRef]
- Hu, S.; Gao, T.; Li, H.; Liu, L.; Liu, X.-C.; Zhang, T.; Cheng, T.-J.; Li, W.-T.; Dai, Z.-H.; Su, X.-J. Effect of atmospheric refraction on radiative transfer in visible and near-infrared band: Model development, validation, and applications. J. Geophys. Res. Atmos. 2016, 121, 2349–2368. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Hovenier, J.W.; Travis, L.D. Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D. T-martrix computations of light scattering by large spheriodal particles. Opt. Commun. 1994, 109, 16–21. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D. Capabilities and limitations of a current fortran implementation of the t-martrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 309–324. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. Discrete-dipole approximation for periodic targets: Theory and tests. J. Opt. Soc. Am. A 2008, 25, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Yurkin, M.A.; Hoekstra, A.G. The discrete-dipole-approximation code adda: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2234–2247. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A 1996, 13, 2073–2085. [Google Scholar] [CrossRef]
- Sun, W.; Fu, Q. Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices. Appl. Opt. 2000, 39, 5569–5578. [Google Scholar] [CrossRef]
- Liu, C.; Panetta, R.L.; Yang, P. Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1728–1740. [Google Scholar] [CrossRef]
- Hu, S.; Gao, T.; Liu, L.; Li, H.; Chen, M.; Yang, B. Application of the weighted total field-scattering field technique to 3d-pstd light scattering model. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 58–72. [Google Scholar] [CrossRef]
- Hu, S.; Gao, T.; Li, H.; Liu, L.; Chen, M.; Yang, B. Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique. Chin. Phys. B 2018, 27, 054215. [Google Scholar] [CrossRef]
- Hu, S.; Gao, T.; Li, H.; Yang, B.; Zhang, F.; Chen, M.; Liu, L. Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: Model development and validation. Opt. Express 2017, 25, 1643–1686. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Gao, T.; Li, H.; Yang, B.; Jiang, Z.; Liu, L.; Chen, M. Application of convolution perfectly matched layer in mrtd scattering model for non-spherical aerosol particles and its performance analysis. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 1–11. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 2000, 39, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Waterman, P.C. Matrix formulation of electromagnetic scattering. Proc. IEEE 1965, 53, 805–812. [Google Scholar] [CrossRef]
- Waterman, P.C. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 1971, 3, 825–839. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P.; Kattawar, G.W.; Mishchenko, M.I. Efficient implementation of the invariant imbedding t-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 169–183. [Google Scholar] [CrossRef]
- Quirantes, A. A t-matrix method and computer code for randomly oriented, axially symmetric coated scatterers. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 373–381. [Google Scholar] [CrossRef]
- Zubko, E.; Muinonen, K.; Muñoz, O.; Nousiainen, T.; Shkuratov, Y.; Sun, W.; Videen, G. Light scattering by feldspar particles: Comparison of model agglomerate debris particles with laboratory samples. J. Quant. Spectrosc. Radiat. Transf. 2013, 131, 175–187. [Google Scholar] [CrossRef]
- Schulz, F.M.; Stamnes, K.; Stamnes, J.J. Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the t matrix computed in spheroidal coordinates. Appl. Opt. 1998, 37, 7875–7896. [Google Scholar] [CrossRef]
- Mackowski, D.W. Discrete dipole moment method for calculation of the t matrix for nonspherical particles. J. Opt. Soc. Am. A 2002, 19, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Loke, V.L.Y.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1460–1471. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P.; Kattawar, G.W.; Mishchenko, M.I. A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transf. 2013, 123, 17–22. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding t-matrix method. J. Quant. Spectrosc. Radiat. Transf. 2014, 138, 17–35. [Google Scholar] [CrossRef]
- Johnson, B.R. Invariant imbedding t matrix approach to electromagnetic scattering. Appl. Opt. 1988, 27, 4861–4873. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.J. Introduction to Electrodynamics, 3rd ed.; Prentice-Hall: Englewood, IL, USA, 1999. [Google Scholar]
- Hu, S.; Gao, T.; Li, H.; Chen, M.; Zhang, F.; Yang, B. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the mrtd scattering model. Opt. Express 2017, 25, 17872–17891. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons, Inc: New York, NY, USA, 1983. [Google Scholar]
Model Type | Cext/μm2 | Cabs/μm2 | Csca/μm2 | ω |
---|---|---|---|---|
EBCM | 4.889 | 0.0953 | 4.793 | 0.98036 |
IIM T-Matrix | 4.872 | 0.0957 | 4.776 | 0.98029 |
Difference/% | 0.3489 | −0.4179 | 0.3559 | 0.00698 |
Model Type | Cext/μm2 | Cabs/μm2 | Csca/μm2 | ω |
---|---|---|---|---|
EBCM | 165.918 | 13.18 | 152.739 | 0.9205 |
IIM T-Matrix | 165.687 | 13.134 | 152.553 | 0.9207 |
Difference/% | 0.1394 | 0.3502 | 0.1219 | −0.0175 |
Model Type | Cext/μm2 | Cabs/μm2 | Csca/μm2 | ω |
---|---|---|---|---|
EBCM | 11.4129 | 0.2791 | 11.1338 | 0.9755 |
IIM T-Matrix | 11.3102 | 0.2735 | 11.0367 | 0.9758 |
Difference/% | 0.9080 | 2.0475 | 0.8798 | −0.0279 |
(a, b) | Number of Threads | Computational Time T0 of the Model without Lorenz–Mie Theory/s | Computational Time T1 of the Model with Lorenz–Mie Theory/s | (T0 − T1)/T0 × 100% |
---|---|---|---|---|
(1.5, 2.0) | 4 | 4463 | 1111 | 75.10643 |
(1.0, 2.0) | 4 | 4438 | 2232 | 49.70708 |
(0.7, 2.0) | 4 | 4485 | 2879 | 35.80825 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Liu, L.; Gao, T.; Zeng, Q. Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes. Appl. Sci. 2019, 9, 4423. https://doi.org/10.3390/app9204423
Hu S, Liu L, Gao T, Zeng Q. Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes. Applied Sciences. 2019; 9(20):4423. https://doi.org/10.3390/app9204423
Chicago/Turabian StyleHu, Shuai, Lei Liu, Taichang Gao, and Qingwei Zeng. 2019. "Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes" Applied Sciences 9, no. 20: 4423. https://doi.org/10.3390/app9204423
APA StyleHu, S., Liu, L., Gao, T., & Zeng, Q. (2019). Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes. Applied Sciences, 9(20), 4423. https://doi.org/10.3390/app9204423