Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste
Abstract
:1. Introduction
2. Materials and Methods
Instruments and Statistical Analysis
- PLDA1: AGGREGATES MORTAR and BRICK + ACM from FIBER GLASS + ORGANIC
- PLSDA2: FIBER GLASS from ORGANIC
- PLSDA3: ACM with a dimension of about 300 µm from GGREGATES MORTAR and BRICK
- PLDA4: ACM WITH A DIMENSION below 300 µm from AGGRAGATES MORTAR and BRICK
3. Results
3.1. Calibration Dataset
3.2. Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ringen, K. Safety and Health in the Construction Industry. Annu. Rev. Public Health 1995. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F. Mineral fibre-based building materials and their health hazards. In Toxicity of Building Materials; Pacheco-Torgal, F., Jalali, S., Fucic, A., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 166–195. [Google Scholar] [CrossRef]
- Bloise, A.; Miriello, D. Multi-Analytical Approach for Identifying Asbestos Minerals In Situ. Geosciences 2018. [Google Scholar] [CrossRef]
- World Health Organizations (WHO). Asbestos and Other Natural Mineral Fibres, Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 1986; Volume 53, p. 194. [Google Scholar]
- Van Zandwijk, N.; Clarke, C.; Henderson, D.; Musk, A.W.; Fong, K.; Nowak, A.; Loneragan, R.; McCaughan, B.; Boyer, M.; Feigen, M.; et al. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J. Thorac. Dis. 2013. [Google Scholar] [CrossRef]
- Brusselmans, L.; Arnouts, L.; Millevert, C.; Vandersnickt, J.; van Meerbeeck, J.P.; Lamote, K. Breath analysis as a diagnostic and screening tool for malignant pleural mesothelioma: A systematic review. Transl. Lung Cancer Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Catalano, M.; Critelli, T.; Apollaro, C.; Miriello, D. Naturally occurring asbestos: Potential for human exposure, San Severino Lucano (Basilicata, Southern Italy). Environ. Earth Sci. 2017. [Google Scholar] [CrossRef]
- Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur. J. Mineral. 2006. [Google Scholar] [CrossRef]
- Vigliaturo, R.; Capella, S.; Rinaudo, C.; Belluso, E. “Rinse and trickle”: A protocol for TEM preparation and investigation of inorganic fibers from biological material. Inhal. Toxicol. 2016. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Gandolfi, N.B.; Pollastri, S.; Rinaldi, R.; Sala, O.; Martinelli, G.; Bacci, T.; Paoli, F.; Viani, A.; Vigliaturo, R. Assessment of the potential hazard represented by natural raw materials containing mineral fibres—The case of the feldspar from Orani, Sardinia (Italy). J. Hazard. Mater. 2018. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Asbestos containing materials detection and classification by the use of hyperspectral imaging. J. Hazard. Mater. 2018. [Google Scholar] [CrossRef]
- Jehlička, J.; Vítek, P.; Edwards, H.G.M.; Heagraves, M.; Čapoun, T. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Laporte-Magoni, C.; Salvioli-Mariani, E.; Gunkel-Grillon, P.; Tribaudino, M.; Mantovani, L.; Bersani, D.; Lottici, P.; Tomatis, M. Monitoring environmental risk in fibrous minerals in New Caledonia: A comparison between different analytical methods. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19, p. 14544. [Google Scholar]
- Valouma, A.; Verganelaki, A.; Tetoros, I.; Maravelaki-Kalaitzaki, P.; Gidarakos, E. Magnesium oxide production from chrysotile asbestos detoxification with oxalic acid treatment. J. Hazard. Mater. 2017. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, F.; Cioffi, R.; Lavorgna, M.; Verdolotti, L.; De Stefano, L. Treatment and recycling of asbestos-cement containing waste. J. Hazard. Mater. 2011. [Google Scholar] [CrossRef] [PubMed]
- Krówczyńska, M.; Wilk, P.; Pabjanek, E.; Kycko, M. Hyperspectral discrimination of asbestos-cement roofing. Geomat. Environ. Eng. 2017, 11, 47–65. [Google Scholar] [CrossRef]
- Frassy, F.; Candiani, G.; Rusmini, M.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Via, G.D.; Albonico, C.; Gianinetto, M. Mapping asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian western alps. Sensors 2014, 14, 15900–15913. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, E.; Shafri, H.Z.M. Using hyperspectral remote sensing data in urban mapping over Kuala Lumpur. Jt. Urban Remote Sens. Event 2011, 2011, 405–408. [Google Scholar] [CrossRef]
- Krówczyńska, M.; Wilk, E.; Pabjanek, P.; Zagajewski, B.; Meuleman, K. Mapping asbestos-cement roofing with the use of APEX hyperspectral airborne imagery: Karpacz area, Poland−a case study. Misc. Geogr. 2016, 20, 41–46. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Hyperspectral imaging applied to the identification and classification of asbestos fibers. Sensors 2015. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A fast and reliable approach for asbestos recognition in complex matrices adopting an hyperspectral imaging based approach. In Proceedings of the 5th International Conference on Industrial & Hazardous Waste Management, Chania, Greece, 27–30 September 2016; pp. 27–30. [Google Scholar]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Asbestos recognition in construction and demolition waste by hyperspectral imaging. In Proceedings of the 6th International Conference on Industrial & Hazardous Waste Management, Chania, Greece, 4–7 September 2018. [Google Scholar]
- Ferrari, C.; Foca, G.; Ulrici, A. Handling large datasets of hyperspectral images: Reducing data size without loss of useful information. Anal. Chim. Acta 2013, 802, 29–39. [Google Scholar] [CrossRef]
- Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 1081, 13–22. [Google Scholar] [CrossRef]
- Yamate, G.; Agarwal, S.C.; Gibbons, R.D. Methodology for the Measurement of Airborne Asbestos by Electron Microscopy; IIT Research Institute: Chicago, IL, USA, 1984. [Google Scholar]
- American Society for Testing and Materials. D-22 Proposal, P 236, Proposed Test Method for Asbestos Containing Materials by Polarized Light Microscopy; ASTM Gray: Washington, DC, USA, 1993; pp. 873–878. [Google Scholar]
- Hunt, G.G. Spectral signatures of particulate minerals in the visible and nearinfrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Pabón, R.E.C.; de Souza Filho, C.R.; de Oliveira, W.J. Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils. Sci. Total Environ. 2019, 649, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, C.; Capobianco, G.; Agresti, G.; Bonifazi, G.; Morresi, F.; Rossi, S.; Santamaria, U.; Serranti, S. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 92–106. [Google Scholar] [CrossRef]
- Kimuli, D.; Wang, W.; Jiang, H.; Zhao, X.; Chu, X. Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels. Infrared Phys. Technol. 2018, 89, 351–362. [Google Scholar] [CrossRef]
- Kucheryavskiy, S. A new approach for discrimination of objects on hyperspectral images. Chemom. Intell. Lab. Syst. 2013, 120, 126–135. [Google Scholar] [CrossRef]
- Calvini, R.; Foca, G.; Ulrici, A. Data dimensionality reduction and data fusion for fast characterization of green coffee samples using hyperspectral sensors. Anal. Bioanal. Chem. 2016, 40826, 7351–7366. [Google Scholar] [CrossRef]
- Calvini, R.; Orlandi, G.; Foca, G.; Ulrici, A. Development of a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging. J. Spectr. Imaging 2018, 7, a13. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to the waste recycling sector. Spectrosc. Eur. 2019, 31, 8–11. [Google Scholar]
- Filzmoser, P.; Gschwandtner, M.; Todorov, V. Review of sparse methods in regression and classification with application to chemometrics. J. Chemometr. 2012, 26, 42. [Google Scholar] [CrossRef]
- Agresti, G.; Bonifazi, G.; Capobianco, G.; Lanteri, L.; Pelosi, C.; Serranti, S.; Veneri, A. Tattoo Wall: Study of the stability of an innovative decorative technique through hyperspectral imaging and possible application in the mural painting’s restoration. In Proceedings of the Optics for Arts, Architecture, and Archaeology VII, International Society for Optics and Photonics, Munich, Germany, 24–27 June 2019; Volume 11058, p. 110581G. [Google Scholar]
- Serranti, S.; Bonifazi, G.; Capobianco, G.; Malinconico, S.; Paglietti, F. Hyperspectral imaging applied to asbestos containing materials detection: Specimen preparation and handling. In Proceedings of the Advanced Environmental, Chemical, and Biological Sensing Technologies XV, International Society for Optics and Photonics, Baltimore, MA, USA, 10 May 2019; Volume 11007, p. 110070S. [Google Scholar]
- Calvini, R.; Amigo, J.M.; Ulrici, A. Transferring results from NIR-hyperspectral to NIR-multispectral imaging systems: A filter-based simulation applied to the classification of Arabica and Robusta green coffee. Anal. Chim. Acta 2017, 967, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Zaini, N.; van der Meer, F.; van der Werff, H. Determination of carbonate rock chemistry using laboratory-based hyperspectral imagery. Remote Sens. 2014, 65, 4149–4172. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 69, 2812–2831. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 516, 3790–3798. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Hohmann, M.; Christoph, N.; Wachter, H.; Rutledge, D.N. Rutledge Improved classification of fused data: Synergetic effect of partial least squares discriminant analysis (PLS-DA) and common components and specific weights analysis (CCSWA) combination as applied to tomato profiles (NMR, IR and IRMS). Chemom. Intell. Lab. Syst. 2016, 156, 1–6. [Google Scholar] [CrossRef]
- Burger, J.E.; Gowen, A.A. Classification and prediction methods. In Hyperspectral Imaging Technology in Food and Agriculture; Food Engineering Series; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; Chapter 5; pp. 103–124. [Google Scholar]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Amigo, J.M.; Santos, C. Preprocessing of hyperspectral and multispectral images. In Data Handling in Science and Technology; Morrissey, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 32, pp. 37–53. [Google Scholar]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 2810, 1201–1222. [Google Scholar] [CrossRef]
Rule | Preprocessing | Classification Output |
---|---|---|
1 | Standard Normal Variate (SNV) Mean Center (MC) |
|
2 | Mean Center (MC) |
|
3 | Standard Normal Variate (SNV) 1st Derivative * Mean Center (MC) |
|
4 | Standard Normal Variate (SNV) and Smoothing ** Mean Center (MC) |
|
rule 1 | AGGREGATES MORTAR AND BRICK + ACM | FIBER GLASS + ORGANIC |
---|---|---|
Sensitivity (Cal): | 95.1 | 95.6 |
Specificity (Cal): | 95.6 | 95.1 |
Sensitivity (CV): | 95.1 | 95.5 |
Specificity (CV): | 95.5 | 95.1 |
rule 2 | FIBER GLASS | ORGANIC |
---|---|---|
Sensitivity (Cal): | 100 | 97.3 |
Specificity (Cal): | 97.3 | 100 |
Sensitivity (CV): | 100 | 97.3 |
Specificity (CV): | 97.3 | 100 |
rule 3 | ACM | AGGREGATES AND MORTAR + BRICK |
---|---|---|
Sensitivity (Cal): | 77.3 | 94.4 |
Specificity (Cal): | 94.4 | 73.3 |
Sensitivity (CV): | 72.8 | 94.4 |
Specificity (CV): | 94.4 | 72.8 |
rule 4 | ACM | AGGREGATES AND MORTAR + BRICK | ORGANIC |
---|---|---|---|
Sensitivity (Cal): | 94.0 | 89 | 99.9 |
Specificity (Cal): | 95.4 | 90.2 | 97.7 |
Sensitivity (CV): | 94.0 | 89 | 99.9 |
Specificity (CV): | 95.4 | 90.2 | 97.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifazi, G.; Capobianco, G.; Serranti, S. Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste. Appl. Sci. 2019, 9, 4587. https://doi.org/10.3390/app9214587
Bonifazi G, Capobianco G, Serranti S. Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste. Applied Sciences. 2019; 9(21):4587. https://doi.org/10.3390/app9214587
Chicago/Turabian StyleBonifazi, Giuseppe, Giuseppe Capobianco, and Silvia Serranti. 2019. "Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste" Applied Sciences 9, no. 21: 4587. https://doi.org/10.3390/app9214587
APA StyleBonifazi, G., Capobianco, G., & Serranti, S. (2019). Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste. Applied Sciences, 9(21), 4587. https://doi.org/10.3390/app9214587