A Granularity-Based Intelligent Tutoring System for Zooarchaeology
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Random forest with parameters:
- -
- classifier__n_estimators (number of trees in the forest): [100, 500, 700]
- -
- classifier__max_features (number of features to consider when looking for the best split): [‘auto’, ‘sqrt’, ‘log2’]
- -
- classifier__class_weight (weights associated with classes; if not given, all classes are supposed to have weight one; the balanced mode uses the values to automatically adjust weights inversely proportional to class frequencies in the input data): [‘balanced’,None]
- Support vector machine (SVM) with parameters:
- -
- classifier__kernel (specifies the kernel type to be used in the algorithm): [‘linear’,’rbf’]
- -
- classifier__gamma (kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’): [1 × 10−3, 1 × 10−4]
- -
- classifier__C (penalty parameter C of the error term): [1, 10, 100]
- Naive bayes.
- Neural networks with parameters:
- -
- classifier__solver (the solver for weight optimization. ‘lbfgs’ is an optimizer in the family of quasi-Newton methods. ‘sgd’ refers to stochastic gradient descent. ‘adam’ refers to a stochastic gradient-based optimizer): [‘lbfgs’, ‘sgd’, ‘adam’]
- -
- classifier__alpha (L2 penalty (regularization term) parameter): [1 × 10−4, 1 × 10−5]
- k-nearest neighbors (KNN) with parameters:
- -
- classifier__n_neighbors (number of neighbors to use): [3, 5, 7, 9]
- Constructive/active learning: The tutor stimulated us to understand underlying mechanisms/theories.
- Self-directed learning: The tutor stimulated us to search for various resources by ourselves.
- Contextual learning: The tutor stimulated us to apply knowledge to the discussed problem.
- Global score: Overall performance of the tutor.
- Open answer: Give some tips for improvement.
3. Results
- Coarse granularity: width, bone, thickness, length, bone fragment, anatomical group, long bone circumference, X, Y, and Z.
- Medium granularity: bone, width, length, anatomic group, bone fragment, Y, X, Z, thickness and manganese.
- Fine granularity: width, bone, length, bone fragment, anatomic group, Z, Y, X, thickness and concretion.
- Coarse granularity: ‘classifier__max_features’: ‘auto’, ‘classifier__class_weight’: ‘balanced’, ‘classifier__n_estimators’: 500.
- Medium granularity: ‘classifier__max_features’: ‘sqrt’, ‘classifier__class_weight’: ‘balanced’, ‘classifier__n_estimators’: 700.
- Fine granularity: ‘classifier__max_features’: ‘auto’, ‘classifier__class_weight’: ‘balanced’, ‘classifier__n_estimators’: 700
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADASYN | Adaptive Synthetic |
AI | Artificial intelligence |
ITS | Intelligent Tutoring System |
KNN | k-nearest neighbors |
NLP | Natural language processing |
SMOTE | Synthetic Minority Over-sampling Technique |
SVM | Support vector machine |
References
- Maldonado-Mahauad, J.; Perez-Sanagustin, M.; Kizilcec, R.; Morales, N.; Munoz-Gama, J. Mining theory-based patterns from Big data: Identifying self regulated learning strategies in Massive Open Online Courses. Comput. Hum. Behav. 2018, 80, 179–196. [Google Scholar] [CrossRef]
- González-Sacristán, C.; Molins-Ruano, P.; Díez, F.; Rodríguez, P.; Sacha, G.M. Computer-assisted Assessment with Item Classification for Programming Skills. In Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality (TEEM ’13), Salamanca, Spain, 14–15 November 2013; ACM: New York, NY, USA, 2013; pp. 111–117. [Google Scholar] [CrossRef]
- Molins-Ruano, P.; González-Sacristán, C.; Díez, F.; Rodriguez, P.; Sacha, G.M. An Adaptive Model for Computer-Assisted Assessment in Programming Skills. Int. J. Eng. Educ. 2015, 31, 764. [Google Scholar]
- Bravo, C.; van Joolingen, W.; de Jong, T. Using co-lab to build system dynamics models: Students’ actions and on-line tutorial advice. Comput. Educ. 2009, 53, 243–251. [Google Scholar] [CrossRef]
- Sabitha, A.; Mehrotra, D.; Bansal, A. An ensemble approach in converging contents of LMS and KMS. Educ. Inf. Technol. 2017, 22, 1673–1694. [Google Scholar] [CrossRef]
- Graesser, A.C.; Chipman, P.; Haynes, B.C.; Olney, A. AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Trans. Educ. 2005, 48, 612–618. [Google Scholar] [CrossRef]
- Baker, R.S.J.; Corbett, A.; Koedinger, K.; Evenson, S.; Roll, I.; Wagner, A.Z.; Raspat, M.N.; Baker, D.J.; Beck, J.E. Adapting to When Students Game an Intelligent Tutoring System. In Intelligent Tutoring Systems; Ikeda, M., Ashley, K.D., Chan, T.W., Eds.; ITS 2006; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4053. [Google Scholar]
- Long, Y.; Aleven, V. Educational Game and Intelligent Tutoring System: A Classroom Study and Comparative Design Analysis. ACM Trans. Comput.-Hum. Interact. 2017, 24, 20. [Google Scholar] [CrossRef]
- D’Mello, S.; Craig, S.; Gholson, B.; Franklin, S.; Picard, R.; Graesser, A. Integrating Affect Sensors in an Intelligent Tutoring System. In Proceedings of the Computer in the Affective Loop Workshop at 2005 International Conference Intelligent User Interfaces, San Diego, CA, USA, 10–13 January 2005; pp. 7–13. [Google Scholar]
- Verdú, E.; Regueras, L.; Gal, E. Integration of an intelligent tutoring system in a course of computer network design. Educ. Technol. Res. Dev. 2017, 65, 653–677. [Google Scholar] [CrossRef]
- Baxter, M. Statistics in Archaeology; Arnold Publ.: London, UK, 2003. [Google Scholar]
- Baxter, M. A review of supervised and unsupervised pattern recognition in archaeometry. Archaeometry 2006, 48, 671–694. [Google Scholar] [CrossRef]
- Barcelo, J.A. Computational Intelligence in Archaeology; Information Science Reference: Hershey, PA, USA, 2009. [Google Scholar]
- Barcelo, J.A.; Bogdanovic, I. Mathematics in Archaeology; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Barceló, J. Visual Analysis in Archaeology: An Artificial Intelligence Approach. In Morphometrics for Nonmorphometricians; Elewa, A.M.T., Ed.; Springer: Berlin, Germany, 2010; pp. 93–156. [Google Scholar]
- Subirats, L.; Fort, S.; Hernández, C.; Pérez, L.; Vesisenaho, M.; Nousiainen, T.; Peltonen, M.; Miakush, I.; Sacha, G.M. Intelligent Tutoring System in Archaeology. In Proceedings of the EdMedia + Innovate Learning, Amsterdam, The Netherlands, 24 June 2019; pp. 745–750. [Google Scholar]
- Bell, S.; Croson, C. Artificial neural networks as a tool for archaeological data analysis. Archeometry 1998, 40, 139–151. [Google Scholar] [CrossRef]
- Ardito, C.; Buono, P.; Costabile, M.; Lanzilotti, R.; Pederson, T. Re-experiencing History in Archaeological Parks by Playing a Mobile Augmented Reality Game. In On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops. OTM 2007. Lecture Notes in Computer Science; Meersman, R., Tari, Z., Herrero, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4805. [Google Scholar]
- Vidal-Matutano, P.; Pérez-Jordà, G.; Hernández, C.M.; Galván, B. Macrobotanical evidence (wood charcoal and seeds) from the Middle Palaeolithic site of El Salt, Eastern Iberia: Palaeoenvironmental data and plant resources catchment areas. J. Archaeol. Sci. Rep. 2018, 19, 454–464. [Google Scholar] [CrossRef]
- Atienza-Fuente, J. The monumental thermal complex of the Roman city of Valeria: Proposal for virtual reconstruction of its cold rooms based on the archaeological findings. Virtual Archaeol. Rev. 2019, 10, 116–131. [Google Scholar] [CrossRef]
- Ferrari, I.; Quarta, A. The Roman pier of San Cataldo: from archaeological data to 3D reconstruction. Virtual Archaeol. Rev. 2019, 10, 28–39. [Google Scholar] [CrossRef]
- Molinero-Polo, M.A.; Pérez-Ruiz, S.; Acebo, A.; Sacha, G.M. Análisis del potencial motivador y docente del uso de las nuevas tecnologías en el aula. Interacción entre el aumento de la motivación y el aprendizaje. Artículo invitado en el monográfico “Cambios metodológicos: Nuevas formas en la enseñanza” de la revista OGE (Organización y Gestión Educativa) del fórum europeo de administradores de la educación; 2016; Volume 3, p. 26. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5502970 (accessed on 29 September 2019).
- Blanquez-Perez, J.; Roldan-Gomez, L. The Urban Reform of the Colonia Libertinorum Carteia during the Augustan Era. The Basilica Building. Gerion-Rev. Hist. Antigua 2017, 35, 443–468. [Google Scholar] [CrossRef]
- Garcia-Vegas, G.; Castelo-Ruano, R.; Lopez-Perez, A. Virtual Reconstructions of Archaeological Heritage. The Convivial Space of the Roman Villa of El Saucedo, Talavera la Nueva, Toledo. Arqueologia Iberoamericana 2017, 35, 3–9. [Google Scholar]
- Machado, J.; Pérez, L. Temporal frameworks to approach human behavior concealed in Middle Palaeolithic palimpsests: A high-resolution example from El Salt Stratigraphic Unit X (Alicante, Spain). Quat. Int. 2016, 66–81. [Google Scholar] [CrossRef]
- Pérez, L.J.; Sanchis, A.; Hernández, C.M.; Galván, B. Paleoecología de macromamíferos aplicada a los conjuntos zooarqueológicos de El Salt y el Abric del Pastor (Alcoy, Alicante). In Interaccions entre felins i humans. III Jornades d’arqueozoologia; Museu de Prehistòria de València: València, Spain, 2017; pp. 327–354. [Google Scholar]
- Pérez, L. Estrategias de subsistencia y dinámicas de asentamiento en los Valles de Alcoy durante el Paleolítico medio. Análisis zooarqueológico, tafonómico y paleoecológico de la secuencia arqueológica de El Salt (Alcoy, Alicante). Ph.D. Thesis, University Rovira i Virgili, Tarragona, Spain, 2019. [Google Scholar]
- Cady, F. The Data Science Handbook; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Lyman, R. Vertebrate Taphonomy, Cambridge Manuals in Archaeology; Cambridge University Press: Camdridge, UK, 1994. [Google Scholar]
- Reitz, E.J.; Wing, E.S. Zooarchaeology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Uerpmann, H.P. Animal bone finds and economic archaeology: A critical study of Osteoarchaeological method. World Archaeol. 1973, 4, 307–322. [Google Scholar] [CrossRef]
- Bunn, H.T. Patterns of skeletal representation and hominid subsistence activities at Olduvai gorge, Tanzania, and Koobi fora, Kenya. J. Hum. Evol. 1986, 15, 673–690. [Google Scholar] [CrossRef]
- Palomo, L.J.; Gisbert, J.; Blanco, J.C. Atlas y Libro Rojo de los Mamíferos Terrestres de España; Dirección General para la Biodiversidad-SECEM-SECEMU: Madrid, Spain, 2007. [Google Scholar]
- Villa, P.; Mahieu, E. Breakage patterns of human long bones. J. Hum. Evol. 1991, 21, 27–48. [Google Scholar] [CrossRef]
- Real, C. Aproximación metodológica y nuevos datos sobre los conjuntos arqueozoológicos del Magdaleniense superior de la Cova de les Cendres. Archivo De Prehistoria Levantina 2012, 29, 99–120. [Google Scholar]
- Real, C. Estudio arqueozoológico y tafonómico del Magdaleniense de la Cova de les Cendres (Teulada-Moraira, Alicante). Doctoral Dissertation, Universitat de València, Valencia, Spain, 2016. [Google Scholar]
- Binford, L.R. Bones: Ancient Men and Modern Myths, Studies in Archaeology; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Shipman, P. Life History of a Fossil. An Introduction to Taphonomy and Paleoecology; Harvard University Press: Boston, MA, USA, 1981. [Google Scholar]
- Shipman, P.; Rose, J. Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record. J. Anthropol. Archaeol. 1983, 2, 57–98. [Google Scholar] [CrossRef]
- Blasco Sancho, M.F. Tafonomía y Prehistoria. Métodos y procedimientos de investigación; Departamento de Ciencias de la Antigüedad—Universidad de Zaragoza; Departamento de Cultura y Educación-Gobierno de Aragón: Zaragoza, Spain, 1992. [Google Scholar]
- Yravedra, J. Tafonomía aplicada a Zooarqueología; UNED: Madrid, Spain, 2006. [Google Scholar]
- Domínguez Rodrigo, M.; Yravedra, J. Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis. J. Archaeol. Sci. 2009, 36, 884–894. [Google Scholar] [CrossRef]
- Denys, C.; Patou-Mathis, M. Manuel De Taphonomie; Archéologiques; Errance: Arles, France, 2014. [Google Scholar]
- Fernandez-Jalvo, Y.; Andrews, P. Atlas of Taphonomic Identifications. 1001+ Images of Fossil and Recent Mammal Bone Modification; Springer: Chame, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Binford, L.R. Nunamiut Ethnoarchaeology; Studies in Archaeology Series; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Shipman, P.; Rose, J.T. Cutmarks mimics on modern and fossil bovid bones. Curr. Anthropol. 1984, 25, 116–117. [Google Scholar] [CrossRef]
- Capaldo, S.D.; Blumenschine, R.J. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. Am. Antiquity 1994, 59, 724–748. [Google Scholar] [CrossRef]
- Dolmans, D.H.J.M.; Ginns, P. A short questionnaire to evaluate the effectiveness of tutors in PBL: Validity and reliability. Med. Teach. 2005, 27, 534–538. [Google Scholar] [CrossRef]
Attribute | Description |
---|---|
Width | Count: 2036, Mean: 14.822829, Std: 8.973862, Min: 0.99, Q1: 8.457500, Q2: 13.43, Q3: 19.32, Max: 71.01 |
Bone: Ca, T, Cx, F, H, U, Fa1, Mtp, Mt2, Mc4, Mt4, Cr, Vl, Vcd, Mc2, Ta, Hem, I/1, Fa, Mt3, Vc, I1/, Mx, As, Pa, R, Es, Fa2, Fa3, Mt5, nan, Mc5, Ct, Vs, Vt, Mc3, V, Das, Dai, Da, Mt, M3/, M1/, Hy, Mc, P2/, P4/-M1/, M/1, Lt2, Art, Cc, PT, M2/, In, M/P, M/1-M/2, P4/, M3, M1/-M2/, P/2, I, M/X, Pl, P/M, R/, Co, L, Lt1, Lt3, P/4, P/3-P/4, Se, dp2/, P3/, M/x, P4/-P3/, M/3, PTPer8, PTPle, PTPL, P/3, M/, M/2, M, Fa1-V, Fa2-II, Fa2-IV, I/C, Fi, Asta, I/3, d/3, Mc2-3, I/2 | Count: 3403, Unique: 93, Top: T, Freq: 374 |
Thickness | Count: 714, Mean: 4.887451, Std: 2.873843, Min: 0.460000, Q1: 3.072500, Q2: 4.595000, Q3: 6.4, Max: 16.52 |
Length | Count: 2492, Mean: 36.25859, Std: 28.28524, Min: 2.42000, Q1: 15.94500, Q2: 27.20000, Q3: 47.80000, Max: 284.96000 |
Bone fragment | Count: 3242, Mean: 189.635102, Std: 204.909877, Min: 1, Q1: 50, Q2: 111, Q3: 500, Max: 555 |
Anatomical group: Mp, Ma, E, C, A, nan, In, ES, Cr, PT, PTPL, PTPl | Count: 3399, Unique: 11, Top: Mp, Freq: 1275 |
Long bone circumference | Count: 1378, Mean: 2.526851, Std: 1.107021, Min: 1, Q1: 2, Q2: 2, Q3: 4, Max: 5 |
X | Count: 1.187000 × 103, Mean: 1.864528 × 103, Std: 6.292228 × 104, Min: 0, Q1: 8.519905, Q2: 2.900000 × 101, Q3: 6.775000 × 101, Max: 2.167891 × 106 |
Y | Count: 1186, Mean: 1272.859123, Std: 30223.002072, Min: 0, Q1: 11.809257, Q2: 24.500000, Q3: 63, Max: 803982 |
Z | Count: 1232, Mean: 403.047662, Std: 9767.169421, Min: −143.8, Q1: −0.156130, Q2: 166.2, Q3: 192.6, Max: 342938 |
Manganeso | Count: 1416, Mean: 1.592514, Std: 0.835553, Min: 1, Q1: 1, Q2: 1, Q3: 2, Max: 5 |
Concretion | Count: 1177, Mean: 1.806287, Std: 1.033386, Min: 1, Q1: 1, Q2: 1, Q3: 2, Max: 5 |
Coarse granularity family: Bovidae, Cervidae, Equidae, Leporidae, unknown | Bovidae: 420 Cervidae: 516, Equidae: 240, Leporidae: 2164, Unknown: 66, Total: 3406 |
Medium granularity family: Bovidae, Canidae, Cervidae, Corvidae, Equidae, Felidae, Leporidae, Phasianidae, Rhinocerotidae, Suidae, Testudinidae, unknown | Bovidae: 420 Canidae: 8, Cervidae: 516, Corvidae: 5, Equidae: 240, Felidae: 24, Leporidae: 2164, Phasianidae: 7, Rhinocerotidae: 2, Suidae: 7, Testudinidae: 9, Unknown: 4, Total: 3406 |
Fine granularity family: Anatidae, Bovidae, Bufonidae, Canidae, Cervidae, Corvidae, Equidae, Erinaceidae, Felidae, Leporidae, Phasianidae, Rhinocerotidae, Suidae, Testudinidae, Ursidae | Anatidae: 1 Bovidae: 420, Bufonidae: 1, Canidae: 8, Cervidae: 516, Corvidae: 5, Equidae: 240, Erinaceidae: 1, Felidae: 24, Leporidae: 2164, Phasianidae: 7, Rhinocerotidae: 2, Suidae: 7, Testudinidae: 9, Ursidae: 1, Total: 3406 |
Method (Parameters) | Accuracy | Precision (Weighted) | Recall (Weighted) | F1-Score (Weighted) |
---|---|---|---|---|
Random forest, SMOTE (classifier class weight: balanced, classifier max features: auto, classifier n estimators: 500) | 0.86 | 0.86 | 0.86 | 0.86 |
SVM, SMOTE (classifier C: 100, classifier gamma: 0.001, classifier kernel: rbf) | 0.74 | 0.81 | 0.74 | 0.77 |
Naive Bayes, SMOTE | 0.68 | 0.76 | 0.68 | 0.66 |
Neural Networks, SMOTE (classifier solver: lbfgs, classifier alpha: 1 × 10−5) | 0.67 | 0.75 | 0.67 | 0.71 |
KNN, SMOTE (classifier n neighbors: 3) | 0.75 | 0.79 | 0.75 | 0.77 |
Random Forest, ADASYN (classifier class weight: balanced, classifier max features: auto, classifier n estimators: 100) | 0.86 | 0.85 | 0.86 | 0.86 |
SVM, ADASYN (classifier C: 100, classifier gamma: 0.001, classifier kernel: rbf) | 0.72 | 0.80 | 0.72 | 0.75 |
Naive Bayes, ADASYN | 0.68 | 0.78 | 0.68 | 0.65 |
Neural Networks, ADASYN (classifier solver: adam, classifier alpha: 1 × 10−5) | 0.67 | 0.79 | 0.67 | 0.72 |
KNN, ADASYN (classifier n neighbors: 3) | 0.74 | 0.79 | 0.74 | 0.76 |
Animal | Coarse | Medium | Fine |
---|---|---|---|
Bovidae | 0.57 | 0.59 | 0.56 |
Cervidae | 0.69 | 0.69 | 0.69 |
Equidae | 0.68 | 0.63 | 0.66 |
Leporidae | 0.97 | 0.94 | 0.96 |
Unknown | 0.50 | 0 | - |
Canidae | - | 0 | 0 |
Corvidae | - | 0 | 0 |
Felidae | - | 0.22 | 0.5 |
Phasianidae | - | 0 | 0 |
Rhinocerotidae | - | 0 | 0 |
Suidae | - | 1 | 0 |
Testudinidae | - | 1 | 1 |
Anatidae | - | - | 0 |
Bufonidae | - | - | 0 |
Erinaceidae | - | - | 0 |
Ursidae | - | - | 0 |
Total weighted | 0.86 | 0.83 | 0.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subirats, L.; Pérez, L.; Hernández, C.; Fort, S.; Sacha, G.-M. A Granularity-Based Intelligent Tutoring System for Zooarchaeology. Appl. Sci. 2019, 9, 4960. https://doi.org/10.3390/app9224960
Subirats L, Pérez L, Hernández C, Fort S, Sacha G-M. A Granularity-Based Intelligent Tutoring System for Zooarchaeology. Applied Sciences. 2019; 9(22):4960. https://doi.org/10.3390/app9224960
Chicago/Turabian StyleSubirats, Laia, Leopoldo Pérez, Cristo Hernández, Santiago Fort, and Gomez-Monivas Sacha. 2019. "A Granularity-Based Intelligent Tutoring System for Zooarchaeology" Applied Sciences 9, no. 22: 4960. https://doi.org/10.3390/app9224960
APA StyleSubirats, L., Pérez, L., Hernández, C., Fort, S., & Sacha, G.-M. (2019). A Granularity-Based Intelligent Tutoring System for Zooarchaeology. Applied Sciences, 9(22), 4960. https://doi.org/10.3390/app9224960