Identifying Areas Sensitive to Wind Erosion—A Case Study of the AP Vojvodina (Serbia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data
- Soil: soil texture (sand, silt, and clay content), the organic matter content and the CaCO3 content. The soil data were obtained from a soil study of the AP Vojvodina soils [24];
- Climate: wind velocity, air temperature, and precipitation. The climate data (average monthly temperature, average monthly precipitation, and average monthly number of days with a wind velocity of above 12.4 m s−1.) were obtained from the annuals (1997–2007) for the month of March from the Republic Hydrometeorological Service of Serbia (RHMOS) [23];
- Vegetation: vegetation cover. The data concerning the vegetation cover were obtained from the Copernicus Global Land Service (CGLS) [25], a ready-made product of 10-daily difference vegetation index (NDVI) index images (resolution 300 × 300 m) for the area of the AP Vojvodina, for March 2016–2019. The data are available at https://land.copernicus.eu/global/products/ndvi and they were accessed on 11 April 2019;
- Land use data: the data on land use were used without the areas which were not considered in this research as irrelevant for wind erosion processes, such as urban areas, water bodies, and mining areas. In order to exclude the abovementioned areas, CORINE Land Cover 2018 was used [26]. The data are available at https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download and they were accessed on 10 May 2019.
2.2.1. Erodibility Fraction Analysis
2.2.2. Climate Factor Analysis
2.2.3. Vegetation Cover Analysis
2.3. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sterk, G.; Riksen, M.; Goossens, D. Dryland degradation by wind erosion and its control. Ann. Arid Zone 2001, 40, 351–367. [Google Scholar]
- Buschiazzo, D.; Funk, R. Wind erosion of agricultural soils and the carbon cycle. In Science, Management and Policy for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; Centre for Agriculture and Biosciences International: Wallingford, UK, 2015; pp. 161–168. [Google Scholar]
- Santra, P.; Moharana, P.; Kumar, M.; Soni, M.L.; Pandey, C.B.; Chaudhari, S.K.; Sikka, A.K. Crop production and economic loss due to wind erosion in hot arid ecosystem of India. Aeolian Res. 2017, 28, 71–82. [Google Scholar] [CrossRef]
- Skidmore, E. Air, Soil, and water quality as influenced by wind erosion and strategies for mitigation. In Proceedings of the AGROENVIRON 2000, 2nd International Symposium of New Technologies for Environmental Monitoring and Agro-Applications, Tekirdag, Turkey, 18–20 October 2000. [Google Scholar]
- European Environmental Agency. The State of Soil in Europe; European Commission: Brussel, Belgium, 2010. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations (FAO). Country Report on the State of Plant Genetic Resources for Food and Agriculture, Country Report—Republic of Serbia; FAO: Roma, Italy, 2010. [Google Scholar]
- Milošević, D.; Savić, S.; Stojanović, V.; Popov-Raljić, J. Effects of precipitation and temperatures on crop yield variability in Vojvodina (Serbia). Ital. J. Agrometeorol. 2015, 3, 35–44. [Google Scholar]
- Vojvodinašume (Eng. VojvodnaForests)—Estimation of the Optimum Afforestation in Vojvodina. Available online: https://www.vojvodinasume.rs/en/sume/procena-optimalne-sumovitosti-u-vojvodini/ (accessed on 18 October 2019).
- Vojvodina Development Agency. Available online: http://rav.org.rs/key-sectors/agribusiness/ (accessed on 18 October 2019).
- Jevtić, L.J. Mogućnost Određivanja Srednje-Godišnjeg Intenziteta Eolske Erozije Putem Mernih Instrumenata. Ph.D. Thesis, Univesity of Belgrade, Belgrade, Serbia, 1970. [Google Scholar]
- Letić, L.J. Research of Wind Erosion Intensity in the Region of Subotica-Horgoš Sands. Ph.D. Thesis, Univesity of Belgrade, Belgrade, Serbia, 1989. [Google Scholar]
- Savić, R. Ugroženost Zemljišta Vojvodine Eolskom Erozijom. Ph.D. Thesis, Univesity of Belgrade, Belgrade, Serbia, 2000. [Google Scholar]
- Veloić, M. Wind Erosion Quantification Process in Deliblato Sands. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2016. [Google Scholar]
- Woodruff, N.P.; Siddoway, F.H. A Wind Erosion Equation; Soil Science Society of America: Madison, WI, USA, 1965. [Google Scholar]
- Fryrear, D.W.; Saleh, A.; Bilbro, J.D.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. Revised Wind Erosion Equation; Technical Bulletin No. 1; Southern Plain Area Cropping Systems Research Laboratory, USDA-ARS: College Station, TX, USA, 1998.
- Mandakn, N.; Tsogtbaatar, J.; Dash, D.; Khudulmur, S. Spatial assessment of soil wind erosion using WEQ approach in Mongolia. J. Geogr. Sci. 2016, 26, 473–483. [Google Scholar] [CrossRef]
- Guo, Z.; Zobech, T.M.; Zhang, K.; Li, F. Estimating potential wind erosion of agricultural lands in northern China using the Revised Wind Erosion Equation and geographic information systems. J. Soil Water Conserv. 2013, 68, 3–21. [Google Scholar] [CrossRef]
- Mirmousavi, S.H. Regional modeling of wind erosion in the North West and South West of Iran. Eurasian Soil Sci. 2014, 49, 942–953. [Google Scholar] [CrossRef]
- Mezösi, G.; Blanka, V.; Bata, T.; Kovacs, F.; Meyer, B. Estimation of regional differences in wind erosion sensitivity in Hungary. Nat. Hazards Earth Syst. Sci. 2015, 15, 97–107. [Google Scholar] [CrossRef]
- Velasević, V.; Letić, L.J. Research of wind erosion intensity in the region of Subotica-Horgos sand. In Proceedings of the IUFRO Technical Session on Geomorphic Hazards in Managed Forests, Montreal, QC, Canada, 5–11 August 1991. [Google Scholar]
- Lalić, B.; Mihailović, D.; Podraščanin, Z. Future state of climate in Vojvodina and expected effects on crop production. Field Veg. Crop Res. 2011, 48, 403–418. [Google Scholar] [CrossRef]
- Wind Atlas Balkan (WAB). Available online: https://balkan.wind-index.com/ (accessed on 5 October 2019).
- Republic Hydrometeorological Service of Serbia. (RHMOS). Available online: http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php (accessed on 5 October 2019).
- Živković, B.; Nejgebauer, V.; Tanasijević, Đ.; Miljković, N.; Stojković, L.; Drezgić, P. Soils of Vovjodina; Institute for Agricultural Research: Novi Sad, Serbia, 1972. [Google Scholar]
- Copernicus Global Land Service (CGLS). NDVI. Available online: https://land.copernicus.eu/global/products/ndvi (accessed on 4 November 2019).
- Copernicus Global Land Service (CGLS). CORINE LAND COVER 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 5 October 2019).
- Chepil, W.S. Relation of wind erosion to the dry aggregate structure of a soil. J. Sci. Food Agric. 1941, 21, 488–507. [Google Scholar]
- Borrelli, P.; Ballabio, C.; Panagos, P.; Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 2014, 232–234, 471–478. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a pan-Europan assessment of land susceptibility to wind erosion. Land Degrad. Dev. 2014, 27, 1093–1105. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Montanarella, L. New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustainability 2015, 7, 8823–8836. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar]
- Saadoud, D.; Hassani, M.; Peinado, F.J.M.; Guettouche, M.S. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS. Aeolian Res. 2018, 32, 24–34. [Google Scholar] [CrossRef]
- Mezösi, G.; Blanka, V.; Bata, T.; Ladanyi, Z.; Kemeny, G.; Meyer, B. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data. Open Geosci. 2016, 8, 465–477. [Google Scholar] [CrossRef]
- Kadović, R.; Bohajar, Y.; Perović, V.; Simić, S.B.; Todosijević, M.; Tošić, S.; Anđelić, M.; Mlađan, D.; Dovezenski, U. Land sensitivity analysis of degradation using MEDALUS model: Case study of Deliblato Sands, Serbia. Arch. Environ. Prot. 2016, 42, 114–124. [Google Scholar] [CrossRef]
- Savić, R.; Letić, L.J.; Benka, P.; Ondrašek, G.; Nikolić, V. Spatial and temporal distribution of potential vulnerability to wind erosion processes in Vojvodina. Agroznanje Agro Knowl. J. 2012, 13, 191–198. [Google Scholar] [CrossRef]
- Svoboda, M.; Fuchs, B.A. Handbook of drought indicators and indices. In Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; World Meteorological Organization (WMO) and Global Water Partnership (GWP): Geneva, Switzerland, 2016. [Google Scholar]
- Grant, P.; Nickling, W. Direct field measurement of wind drag on vegetation for application to windbreak design and modelling. Land Degrad. Dev. 1998, 9, 57–66. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Song, Y.; Liu, L.; Yan, P.; Cao, T. A review of soil erodibility in water and wind erosion research. J. Geogr. Sci. 2005, 15, 167–176. [Google Scholar] [CrossRef]
- Słowińska-Jurkiewicz, A.; Bryk, M.; Medvedev, V.V. Long-term organic fertilization effect on chernozem structure. Int. Agrophys. 2013, 27, 81–87. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Wind erosion. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 55–80. [Google Scholar] [CrossRef]
- Youssef, F.; Visser, S.M.; Karssenberg, D.; Erpul, G.; Cornelis, W.M.; Gabriels, D.; Poortinga, A. The effect of vegetation patterns on wind-blown mass transport at the regional scale: A wind-tunnel experiment. Geomorphology 2012, 158–159, 178–188. [Google Scholar] [CrossRef]
- Letić, L.J.; Štefkić, D.; Blesić, P. Eolska erozija na području SAP Vojvodine. Zemljište biljka 1984, 33, 121–128. [Google Scholar]
- Banski, J.; Bednared-Szceepanska, M.; Czapiewski, K.; Mazur, M. Perspectives for Agriculture of Vojvodina in the Light of Scenarios and Models Elaborated in the Framework of the Research Project; Institute of Geography and Spatial Organization PAS: Warsaw, Poland, 2010. [Google Scholar]
- Velašević, V. Prilog Proučavanju Optimalnih Konstrukcija Šumskih Snegobranih Pojaseva. Master’s Thesis, Univesity of Belgrade, Belgrade, Serbia, 1967. [Google Scholar]
- Gavrilov, M.B.; Marković, S.B.; Schaetzl, R.J.; Tošić, I.; Zeeden, C.; Obreht, I.; Lehmkuhl, F. Prevailing surface winds in Northern Serbia in the recent and past time periods; modern-and past dust deposition. Aeolian Res. 2018, 31, 117–129. [Google Scholar] [CrossRef]
- Mezösi, G.; Szatmári, J. Assessment of wind erosion risk on the agricultural area of the southern part of Hungary. J. Hazard. Mater. 1998, 61, 139–153. [Google Scholar] [CrossRef]
- Šijačić-Nikolić, M.; Vilotić, D.; Radović, M.; Stanković, D. Application of super-absorbant polymers in forestation of degraded terrains. Topola 2008, 181–182, 21–29. [Google Scholar]
Fuzzy Value Interval | Sensitivity | Area (%) |
---|---|---|
0.0–0.19 | Low | 3.63 |
0.2–0.39 | Medium | 35.92 |
0.4–0.9 | High | 60.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumgertel, A.; Lukić, S.; Belanović Simić, S.; Kadović, R. Identifying Areas Sensitive to Wind Erosion—A Case Study of the AP Vojvodina (Serbia). Appl. Sci. 2019, 9, 5106. https://doi.org/10.3390/app9235106
Baumgertel A, Lukić S, Belanović Simić S, Kadović R. Identifying Areas Sensitive to Wind Erosion—A Case Study of the AP Vojvodina (Serbia). Applied Sciences. 2019; 9(23):5106. https://doi.org/10.3390/app9235106
Chicago/Turabian StyleBaumgertel, Aleksandar, Sara Lukić, Snežana Belanović Simić, and Ratko Kadović. 2019. "Identifying Areas Sensitive to Wind Erosion—A Case Study of the AP Vojvodina (Serbia)" Applied Sciences 9, no. 23: 5106. https://doi.org/10.3390/app9235106
APA StyleBaumgertel, A., Lukić, S., Belanović Simić, S., & Kadović, R. (2019). Identifying Areas Sensitive to Wind Erosion—A Case Study of the AP Vojvodina (Serbia). Applied Sciences, 9(23), 5106. https://doi.org/10.3390/app9235106