An Internet of Things-Based Environmental Quality Management System to Supervise the Indoor Laboratory Conditions
Abstract
:1. Introduction
2. Related Work
Proposed iAQ+ Management System
3. Laboratory Environmental Conditions
4. Materials and Methods
- FireBeetle ESP8266 is 32-bit Tensilica L106 microcontroller module which supports IEEE802.11 b/g/n WiFi (2.4 GHz~2.5 GHz). This module support one 10-bit analogue input, 10 digital inputs which incorporate multiple interfaces such as SPI, I2C, IR, and I2S. The clock speed is 80MHz and can reach a maximum 160MHz; in addition, it includes a 50KB SRAM and 16MB flash memory. It supports a low-power-consumption mode of 46uA and the operating voltage is 3.3 V.
- DFRobot Gravity BME680 is an I2C environmental VOC sensor, temperature sensor, humidity sensor and barometer. It supports an input voltage of 3.3–5.0 V; the operating current consumption is 5 mA without air quality sensing and 25 mA with air quality features. This sensor module size is 30 × 22 mm / 1.18 × 0.87 inches. The temperature range is from -40 °C to +85 °C with a precision of ±1.0 °C (0–65 °C). The humidity range is from 0 to 100% r.H with a precision of a ±3% r.H. (20–80% r.H., 25 °C). The atmospheric pressure measurement range is from 300 to 1100 hPa with a precision of ±0.6 hPa (300–1100 hPa, 0–65 °C).
- DFRobot Buzzer Module is a buzzer module that supports an input voltage of 3.3–5.0 V.
- 5V Green LED—a 5 V green LED is used to notify the end-user of a good IEQ conditions.
- 5V Red LED—a 5 V red LED is used to notify the end-user of poor IEQ conditions.
5. Results and Discussion
Managerial Implication
6. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Vilcekova, S.; Meciarova, L.; Burdova, E.K.; Katunska, J.; Kosicanova, D.; Doroudiani, S. Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. Build. Environ. 2017, 120, 29–40. [Google Scholar] [CrossRef]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2016, 11, 284–295. [Google Scholar] [CrossRef] [PubMed]
- De Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Giusto, D.; Iera, A.; Morabito, G.; Atzori, L. (Eds.) The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-1673-0. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Ibaseta, D.; Molleda, J.; Díez, F.; Granda, J.C. Indoor Air Quality Monitoring Sensor for the Web of Things. Proceedings 2018, 2, 1466. [Google Scholar] [CrossRef]
- Yin, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Bhatt, Y.; Bhatt, C. Internet of Things in HealthCare. In Internet of Things and Big Data Technologies for Next Generation Healthcare; Bhatt, C., Dey, N., Ashour, A.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 23, pp. 13–33. ISBN 978-3-319-49735-8. [Google Scholar]
- Marques, G.; Pitarma, R. An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 2016, 13, 1152. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing, 1950–2050; Department of Economic and Social Affairs, Population Division, United Nations: New York, NY, USA, 2002; pp. 11–13. ISBN 92-1-051092-5. [Google Scholar]
- Centers for Disease Control and Prevention. The state of aging and health in America 2007. N. A. on an Aging Society. 2007. Available online: http:// https://www.cdc.gov/aging/pdf/saha_2007.pdf (accessed on 1 December 2018).
- Koleva, P.; Tonchev, K.; Balabanov, G.; Manolova, A.; Poulkov, V. Challenges in designing and implementation of an effective Ambient Assisted Living system. In Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Niš, Serbia, 14–17 October 2015; pp. 305–308. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Hernández-Muñoz, J.M.; Vercher, J.B.; Muñoz, L.; Galache, J.A.; Presser, M.; Hernández Gómez, L.A.; Pettersson, J. Smart Cities at the Forefront of the Future Internet. In The Future Internet; Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., et al., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 447–462. ISBN 978-3-642-20897-3. [Google Scholar]
- Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 14–17 December 2014; pp. 874–878. [Google Scholar]
- Alaa, M.; Zaidan, A.A.; Zaidan, B.B.; Talal, M.; Kiah, M.L.M. A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 2017, 97, 48–65. [Google Scholar] [CrossRef]
- Theoharidou, M.; Tsalis, N.; Gritzalis, D. Smart Home Solutions: Privacy Issues. In Handbook of Smart Homes, Health Care and Well-Being; Van Hoof, J., Demiris, G., Wouters, E.J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–81. ISBN 978-3-319-01582-8. [Google Scholar]
- Feng, S.; Setoodeh, P.; Haykin, S. Smart Home: Cognitive Interactive People-Centric Internet of Things. IEEE Commun. Mag. 2017, 55, 34–39. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; Fernandes, E.d.O. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air 2016, 26, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Kielb, C.; Lin, S.; Muscatiello, N.; Hord, W.; Rogers-Harrington, J.; Healy, J. Building-related health symptoms and classroom indoor air quality: A survey of school teachers in New York State. Indoor Air 2015, 25, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Choo, C.P.; Jalaludin, J. An overview of indoor air quality and its impact on respiratory health among Malaysian school-aged children. Rev. Environ. Health 2015, 30, 9–18. [Google Scholar] [CrossRef]
- Lee, S.; Chang, M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 2000, 41, 109–113. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Havenith, G.; Holmér, I.; Parsons, K. Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Pereira, L.D.; Cardoso, E.; da Silva, M.G. Indoor air quality audit and evaluation on thermal comfort in a school in Portugal. Indoor Built Environ. 2015, 24, 256–268. [Google Scholar] [CrossRef]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Sanchez-Rosario, F.; Sanchez-Rodriguez, D.; Alonso-Hernandez, J.B.; Travieso-Gonzalez, C.M.; Alonso-Gonzalez, I.; Ley-Bosch, C.; Ramirez-Casanas, C.; Quintana-Suarez, M.A. A low consumption real time environmental monitoring system for smart cities based on ZigBee wireless sensor network. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 702–707. [Google Scholar]
- Zhou, P.; Huang, G.; Zhang, L.; Tsang, K.-F. Wireless sensor network based monitoring system for a large-scale indoor space: Data process and supply air allocation optimization. Energy Build. 2015, 103, 365–374. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. IAQ Evaluation Using an IoT CO2 Monitoring System for Enhanced Living Environments. In Trends and Advances in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 746, pp. 1169–1177. ISBN 978-3-319-77711-5. [Google Scholar]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med Syst. 2017, 41, 23. [Google Scholar] [CrossRef]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring Indoor Air Quality to Improve Occupational Health. In New Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Mendonça Teixeira, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 445, pp. 13–21. ISBN 978-3-319-31306-1. [Google Scholar]
- Marques, G.; Pitarma, R. Smartwatch-Based Application for Enhanced Healthy Lifestyle in Indoor Environments. In Computational Intelligence in Information Systems; Omar, S., Haji Suhaili, W.S., Phon-Amnuaisuk, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 888, pp. 168–177. ISBN 978-3-030-03301-9. [Google Scholar]
- Marques, G.; Pitarma, R. Using IoT and Social Networks for Enhanced Healthy Practices in Buildings. In Information Systems and Technologies to Support Learning; Rocha, Á., Serrhini, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 111, pp. 424–432. ISBN 978-3-030-03576-1. [Google Scholar]
- Marques, G.; Pitarma, R. Monitoring Health Factors in Indoor Living Environments Using Internet of Things. In Recent Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 570, pp. 785–794. ISBN 978-3-319-56537-8. [Google Scholar]
- Marques, G.; Roque Ferreira, C.; Pitarma, R. A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings. Int. J. Environ. Res. Public Health 2018, 15, 821. [Google Scholar] [CrossRef]
- Akkaya, K.; Guvenc, I.; Aygun, R.; Pala, N.; Kadri, A. IoT-based occupancy monitoring techniques for energy-efficient smart buildings. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015; pp. 58–63. [Google Scholar]
- Wargocki, P.; Wyon, D.P.; Sundell, J.; Clausen, G.; Fanger, P.O. The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity. Indoor Air 2000, 10, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Srivatsa, P.; Pandhare, A. Indoor Air Quality: IoT Solution. In Proceedings of the National Conference NCPCI, 19 March 2016; Volume 2016, p. 19. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors 2017, 17, 1021. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sridevi, S.; Pitchiah, R. Indoor air quality monitoring using wireless sensor network. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 422–427. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.K.; Chew, S.P.; Jusoh, M.T.; Khairunissa, A.; Leong, K.Y.; Azid, A.A. WSN based indoor air quality monitoring in classrooms. AIP Conf. Proc. 2017, 1808, 020063. [Google Scholar]
- Liu, J.; Chen, Y.; Lin, T.; Lai, D.; Wen, T.; Sun, C.; Juang, J.; Jiang, J.-A. Developed urban air quality monitoring system based on wireless sensor networks. In Proceedings of the 2011 Fifth International Conference on Sensing Technology, Palmerston North, New Zealand, 28 November–1 December 2011; pp. 549–554. [Google Scholar]
- Kang, J.; Hwang, K.-I. A Comprehensive Real-Time Indoor Air-Quality Level Indicator. Sustainability 2016, 8, 881. [Google Scholar] [CrossRef]
- Benammar, M.; Abdaoui, A.; Ahmad, S.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors 2018, 18, 581. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.C.; King, C.; Kosior, A. Laboratory air quality and room ventilation rates: An update. J. Chem. Health Saf. 2011, 18, 21–24. [Google Scholar] [CrossRef]
- Stuart, R.; Sweet, E.; Batchelder, A. Assessing general ventilation effectiveness in the laboratory. J. Chem. Health Saf. 2015, 22, 2–7. [Google Scholar] [CrossRef]
- Yau, Y.H.; Chew, B.T.; Saifullah, A.Z.A. Studies on the indoor air quality of Pharmaceutical Laboratories in Malaysia. Int. J. Sustain. Built Environ. 2012, 1, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Ugranli, T.; Gungormus, E.; Sofuoglu, A.; Sofuoglu, S.C. Indoor Air Quality in Chemical Laboratories. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 859–878. ISBN 978-0-444-63605-8. [Google Scholar]
- Morbeck, D.E. Air quality in the assisted reproduction laboratory: A mini-review. J. Assist. Reprod. Genet. 2015, 32, 1019–1024. [Google Scholar] [CrossRef]
Authors | MCU | Sensors | Architecture | Low Cost | Open-Source | Connectivity | Data Access | Easy Installation | Notifications |
---|---|---|---|---|---|---|---|---|---|
P. Srivatsa and A. Pandhare [45] | Raspberry Pi | CO2 | WSN/IoT | √ | √ | Wi-Fi | Web | × | × |
F. Salamone et al. [46] | Arduino UNO | CO2 | WSN | √ | √ | ZigBee | × | × | × |
S. Bhattacharya et al. [47] | Waspmote | CO, CO2, PM, Temperature, Relative Humidity | WSN | × | √ | ZigBee | Desktop | × | × |
F. Salamone et al. [48] | Arduino UNO | Temperature, Relative Humidity, CO2, Ligth, Air velocity | IoT | √ | √ | ZigBee / BLE | Mobile | × | × |
Wang, S.K et al. [49] | Arduino | Temperature, Relative Humidity, CO2 | WSN | √ | √ | ZigBee | Desktop | × | × |
Jen-Hao Liu et al. [50] | TI MSP430 | CO, Temperature, Relative Humidity | WSN | √ | √ | ZigBee | × | × | × |
J.Kang and K. Hwang [51] | TI MSP430 | CO, Temperature, Relative Humidity, VOC, PM | IoT | √ | × | ZigBee | × | × | × |
Benammar M. et al [52] | Raspberry Pi | CO2, CO, SO2, NO2, O3, Cl2, CO, Temperature, Relative Humidity | IoT/WSN | √ | × | ZigBee/Ethernet | × | × | × |
IAQ index | Air Quality |
---|---|
0–50 | Good air quality |
51–100 | Normal air quality |
101–150 | Little poor air quality |
151–300 | Poor air quality |
201–300 | Bad air quality |
301–500 | Very bad air quality |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, G.; Pitarma, R. An Internet of Things-Based Environmental Quality Management System to Supervise the Indoor Laboratory Conditions. Appl. Sci. 2019, 9, 438. https://doi.org/10.3390/app9030438
Marques G, Pitarma R. An Internet of Things-Based Environmental Quality Management System to Supervise the Indoor Laboratory Conditions. Applied Sciences. 2019; 9(3):438. https://doi.org/10.3390/app9030438
Chicago/Turabian StyleMarques, Gonçalo, and Rui Pitarma. 2019. "An Internet of Things-Based Environmental Quality Management System to Supervise the Indoor Laboratory Conditions" Applied Sciences 9, no. 3: 438. https://doi.org/10.3390/app9030438