Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Micro Computed Tomography
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boerckel, J.D.; Mason, D.E.; McDermott, A.M.; Alsberg, E. Microcomputed tomography: Approaches and applications in bioengineering. Stem. Cell. Res. Ther. 2014, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Stauber, M.; Müller, R. Micro-computed tomography: A method for the non-destructive evaluation of the three-dimensional structure of biological specimens. Methods Mol. Biol. 2008, 455, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Gapiński, B.; Wieczorowski, M.; Grzelka, M.; Alonso, P.A.; Bermúdez Tomé, A. The application of micro computed tomography to assess quality of parts manufactured by means of rapid prototyping. Polimery 2017, 62, 53–59. [Google Scholar] [CrossRef]
- Garcea, S.C.; Wang, Y.; Withers, P.J. X-ray computed tomography of polymer composites. Compos. Sci. Technol. 2018, 156, 305–319. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Studies on eco-friendly concrete incorporating industrial waste as aggregates. Int. J. Sustain. Built Environ. 2015, 4, 378–390. [Google Scholar] [CrossRef]
- Samal, S.; Thanh, N.P.; Petríková, I.; Marvalová, B. Improved mechanical properties of various fabric-reinforced geocomposite at elevated temperature. JOM 2015, 67, 1478–1485. [Google Scholar] [CrossRef]
- Samal, S.; Thanh, N.P.; Marvalová, B.; Petríková, I. Thermal Characterization of Metakaolin-Based Geopolymer. JOM 2017, 69, 2480–2484. [Google Scholar] [CrossRef]
- Natali, A.; Manzia, S.; Bignozzi, M.C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng. 2011, 21, 1124–1131. [Google Scholar] [CrossRef]
- Nematollahi, B.; Ranade, R.; Sanjayan, J.; Ramakrishnan, S. Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Arch. Civ. Mech. Eng. 2017, 17, 55–64. [Google Scholar] [CrossRef]
- Blanco, I. The Rediscovery of POSS: A Molecule Rather than a Filler. Polymers 2018, 10, 904. [Google Scholar] [CrossRef]
- Samal, S.; Reichmann, D.; Petríková, I.; Marvalová, B. Low Velocity Impact on Fiber Reinforced Geocomposites. Appl. Mech. Mat. 2016, 827, 145–148. [Google Scholar] [CrossRef]
- Samal, S.; Marvalová, B.; Petríková, I.; Vallons, K.A.M.; Lomov, S.V.; Rahier, H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2016, 127, 111–124. [Google Scholar] [CrossRef]
- Pelivanov, I.; Ambrozinski, L.; Khomenko, A.; Koricho, E.G.; Cloud, G.L.; Haq, M.; O’Donnell, M. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner. Photoacoustics 2016, 4, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.; Thanh, N.P.; Petríková, I.; Marvalová, B.; Vallons, K.A.M.; Lomov, S.V. Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature. Ceram. Int. 2015, 41, 12115–12129. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr. Build. Mater. 2016, 25, 661–669. [Google Scholar] [CrossRef]
- Sisodia, S.M.; Garcea, S.C.; George, A.R.; Fullwood, D.T.; Spearing, S.M.; Gamstedt, E.K. High-resolution computed tomography in resin infused woven carbon fibre composites with voids. Compos. Sci. Technol. 2016, 131, 12–21. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos. Part B 2011, 42, 874–884. [Google Scholar] [CrossRef]
- Ullah, H.; Harland, A.R.; Silberschmidt, V.V. Dynamic bending behaviour of woven composites for sports products: Experiments and damage analysis. Mater. Des. 2015, 88, 149–156. [Google Scholar] [CrossRef]
- Wang, Y.; Burnett, T.L.; Chai, Y.; Soutis, C.; Hogg, P.J.; Withers, P.J. X-ray computed tomography study of kink bands in unidirectional composites. Compos. Struct. 2017, 160, 917–924. [Google Scholar] [CrossRef]
- Samal, S.; Vlach, J.; Kolinova, M.; Kavan, P. Micro-Computed Tomography Characterization of Isotropic Filler Distribution in Magnetorheological Elastomeric Composites. In Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials; Ohji, T., Singh, M., Halbig, M., Moon, K., Eds.; Wiley: Hoboken, NJ, USA, 2017; Chapter 7; pp. 57–69. ISBN 9781119321705. [Google Scholar]
- Samal, S.; Kolinova, M.; Blanco, I. The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite. J. Compos. Sci. 2018, 2, 54. [Google Scholar] [CrossRef]
- Benfratello, S.; Fiore, V.; Palizzolo, L.; Scalici, T. Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry. Arch. Civ. Mech. Eng. 2017, 17, 169–177. [Google Scholar] [CrossRef]
- Mayr, G.; Plank, B.; Sekelja, J.; Hendorfer, G. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers. NDT E Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Awaja, F.; Nguyen, M.-T.; Zhang, S.; Arhatari, B. The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro CT. Compos. Part A 2011, 42, 408–418. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Guglielmino, E. Computed Tomography analysis of damage in composites subjected to impact loading. Frattura ed Integrità Strutturale 2011, 5, 32–41. [Google Scholar] [CrossRef]
- Fidan, S.; Snmazçelik, T.; Avcu, E. Internal damage investigation of the impacted glass/glassaramid fiber reinforced composites by micro-computerized tomography. NDT E Int. 2012, 51, 1–7. [Google Scholar] [CrossRef]
- Patel, D.K.; Waas, A.M. Damage and failure modelling of hybrid three-dimensional textile composites: A mesh objective multi-scale approach. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20160036. [Google Scholar] [CrossRef]
Reinforcement | Density g/cm3 | Fiber V Fraction % | Matrix V Fraction % | Voids V Fraction % |
---|---|---|---|---|
Carbon | 1.51 | 39 | 40 | 21 |
Basalt | 1.97 | 40 | 45 | 15 |
E-glass | 1.80 | 41 | 37 | 22 |
Source voltage | 100 kV | Exposure | 2849 ms |
Source current | 100 µV | Rotation step | 0.4° |
Image pixel size | 16.0 µm | Scanning position | 18 mm |
Object to source | 193.3 mm | Reconstruction program | Nrecon |
Camera to source | 268.6 mm | Ring artifact correction | 20 |
Beam hardening correction | 0% | Scanning position | 18 mm |
Cone beam angle horizontal | 15.16° | Cone beam angle vertical | 5.17° |
No of projections | 2849 | X-ray spot target | 16 μm |
Total test time | 4 h | Camera Resolution | 1632 × 1092 |
Experimental Parameters | Carbon Composite | E-glass Composite | Basalt Composite |
---|---|---|---|
Number of Layers | 65 | 99 | 86 |
Number of fibers | 174 | 520 | 423 |
Number of closed pores | 0 | 0 | 5 |
Volume of closed pores (mm3) | 0.0 | 0.0 | 0.04 |
Surface of closed pores (mm2) | 0 | 0 | 1.96 |
Closed porosity percentage (%) | 0.0 | 0.0 | 0.06 |
Volume of open pore space (mm3) | 99.61 | 242.37 | 559.99 |
Total porosity % | 17.78 | 43.27 | 89.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samal, S.; Kolinova, M.; Rahier, H.; Dal Poggetto, G.; Blanco, I. Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Appl. Sci. 2019, 9, 516. https://doi.org/10.3390/app9030516
Samal S, Kolinova M, Rahier H, Dal Poggetto G, Blanco I. Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Applied Sciences. 2019; 9(3):516. https://doi.org/10.3390/app9030516
Chicago/Turabian StyleSamal, Sneha, Marcela Kolinova, Hubert Rahier, Giovanni Dal Poggetto, and Ignazio Blanco. 2019. "Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study" Applied Sciences 9, no. 3: 516. https://doi.org/10.3390/app9030516
APA StyleSamal, S., Kolinova, M., Rahier, H., Dal Poggetto, G., & Blanco, I. (2019). Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Applied Sciences, 9(3), 516. https://doi.org/10.3390/app9030516