Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Visual Field
Abstract
:Featured Application
Abstract
1. Introduction
2. Optic Flow
3. The Important Role of Optic Flow in Postural Control
3.1. The Functional Role of the Foveal and Peripheral Visual Field
3.1.1. First Perspective: Peripheral Vision Plays the Most Important Role in Postural Control
3.1.2. Second Perspective: Central and Peripheral Vision have the Same Functional Role
3.1.3. Third Perspective: Central and Peripheral Vision Have Functional Differences and Complementary Roles
3.2. Different Methodologies Used for Assessing the Role of the Central and Peripheral Visual Fields
4. Visual Pathways
5. Conclusions
Selection of the Studies
Funding
Conflicts of Interest
References
- Lappe, M.; Bremmer, F.; van den Berg, A.V. Perception of self-motion from visual flow. Trends Cogn. Sci. 1999, 3, 329–336. [Google Scholar] [CrossRef]
- Gibson, J.J. The Perception of the Visual World; Houghton Mifflin: Boston, MA, USA, 1950. [Google Scholar]
- Gibson, J.J. The visual perception of objective motion and subjective movement. Psychol. Rev. 1954, 61, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J.; Benolken, M.S. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp. Brain Res. 1995, 105, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Higuchi, T.; Mori, S.; Uemura, K.; Nagai, K.; Aoyama, T.; Ichihashi, N. Maladaptive turning and gaze behavior induces impaired stepping on multiple footfall targets during gait in older individuals who are at high risk of falling. Arch. Gerontol. Geriatr. 2012, 54, e102–e108. [Google Scholar] [CrossRef] [PubMed]
- Brandt, T.; Dichgans, J.; Koenig, E. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 1973, 16, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, T.M.; Schöner, G.; Gielen, C.C. Temporal stability of the action-perception cycle for postural control in a moving visual environment. Exp. Brain Res. 1994, 97, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, T.M.; Schöner, G.; Giese, M.A.; Gielen, C.C.A.M. Frequency dependence of the action-perception cycle for postural control in a moving visual environment: Relative phase dynamics. Biol. Cybern. 1994, 71, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Kiemel, T.; Oie, K.S.; Jeka, J.J. Multisensory fusion and the stochastic structure of postural sway. Biol. Cybern. 2002, 87, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, F.; Soechting, J.; Berthoz, A. Postural readjustments induced by linear motion of visual scenes. Exp. Brain Res. 1977, 28, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Stoffregen, T.A. Flow structure versus retinal location in the optical control of stance. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Stoffregen, T.A. The role of optical velocity in the control of stance. Percept. Psychophys. 1986, 39, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffregen, T.A.; Schmuckler, M.A.; Gibson, E.J. Use of central and peripheral optic flow in stance and locomotion in young walkers. Perception 1987, 16, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Van Asten, W.N.; Gielen, C.C.; van der Gon, J.J.D. Postural adjustments induced by simulated motion of differently structured environments. Exp. Brain Res. 1988, 73, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, A.M. Suppression of visually evoked postural responses. Exp. Brain Res. 1986, 63, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lishman, J.R. Visual proprioceptive control of stance. J. Hum. Mov. Stud. 1975, 1, 87–95. [Google Scholar]
- Persiani, M.; Piras, A.; Squatrito, S.; Raffi, M. Laterality of stance during optic flow stimulation in male and female young adults. BioMed Res. Int. 2015, 2015, 542645. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Raffi, M.; Perazzolo, M.; Squatrito, S. Influence of heading perception in the control of posture. J. Electromyogr. Kinesiol. 2018, 39, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Piras, A.; Persiani, M.; Perazzolo, M.; Squatrito, S. Angle of gaze and optic flow direction modulate body sway. J. Electromyogr. Kinesiol. 2017, 35, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Piras, A.; Persiani, M.; Squatrito, S. Importance of optic flow for postural stability of male and female young adults. Eur. J. Appl. Physiol. 2014, 114, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.J.; de Luca, C.J. The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp. Brain Res. 1995, 103, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.; Gascuel, J.D. Reactive Ocular and Balance Control in Immersive Visual Flows: 2D vs. 3D Virtual Stimuli. Stud. Health Technol. Inform. 2009, 144, 208–210. [Google Scholar] [PubMed]
- Lee, D.N. The optic flow field: The foundation of vision. Phil. Trans. R. Soc. Lond. B 1980, 290, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J. Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 1958, 49, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Craig, C.M.; Grealy, M.A. Sensory and intrinsic coordination of movement. Proc. R. Soc. B Biol. Sci. 1999, 266, 2029–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, C.J.; Wurtz, R.H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. J. Neurophysiol. 1991, 65, 1329–1345. [Google Scholar] [CrossRef] [PubMed]
- Duffy, C.J.; Wurtz, R.H. Sensitivity of MST neurons to optic flow stimuli. II. Mechanism of response selectivity revealed by small-field stimuli. J. Neurophysiol. 1991, 65, 1346–1359. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Carrozzini, C.; Maioli, M.G.; Squatrito, S. Multimodal representation of optic flow in area PEc of macaque monkey. Neuroscience 2010, 171, 1241–1255. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Maioli, M.G.; Squatrito, S. Optic flow direction coding in area PEc of the behaving monkey. Neuroscience 2011, 194, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Persiani, M.; Piras, A.; Squatrito, S. Optic flow neurons in area PEc integrate eye and head position signals. Neurosci. Lett. 2014, 568, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Piras, A.; Calzavara, R.; Squatrito, S. Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow. BioMed Res. Int. 2017, 2017, 6495872. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Siegel, R.M. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS ONE 2007, 2, e200. [Google Scholar] [CrossRef] [PubMed]
- Raffi, M.; Squatrito, S.; Maioli, M.G. Neuronal responses to optic flow in the monkey parietal area PEc. Cereb. Cortex 2002, 12, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.M.; Read, H.L. Analysis of optic flow in the monkey parietal area 7a. Cereb. Cortex 1997, 7, 327–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osaka, N. Peripheral Vision. In New Sensation Perception Psychology Handbook; Oyama, T., Imai, S., Wake, T., Eds.; Seishin-Shobou: Tokyo, Japan, 1994; pp. 923–930. [Google Scholar]
- Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurol. 1990, 292, 497–523. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Sloan, K.R.; Packer, O.; Hendrickson, A.E.; Kalina, R.E. Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science 1987, 236, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Mishkin, M.; Ungerleider, L.G. Contribution of striate inputs to the visuospatial functions of parietopreoccipital cortex in monkeys. Behav. Brain Res. 1982, 6, 57–77. [Google Scholar] [CrossRef]
- Bardy, B.G.; Warren, W.H.J.; Kay, B.A. The role of central and peripheral vision in postural control during walking. Percept. Psychophys. 1999, 61, 1356–1368. [Google Scholar] [CrossRef] [PubMed]
- Amblard, B.; Carblanc, A. Role of foveal and peripheral visual information in maintenance of postural equilibrium in man. Percept. Mot. Ski. 1980, 51, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Berencsi, A.; Ishihara, M.; Imanaka, K. The functional role of central and peripheral vision in the control of posture. Hum. Mov. Sci. 2005, 24, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, T.; Kuno, S.; Miyake, Y.; Watanabe, S. Body sway induced by depth linear vection in reference to central and peripheral visual field. Jpn. J. Physiol. 2000, 50, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Piponnier, J.C.; Hanssens, J.M.; Faubert, J. Effect of visual field locus and oscillation frequencies on posture control in an ecological environment. J. Vis. 2009, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Previc, F.H.; Neel, R.L. The effects of visual surround eccentricity and size on manual and postural control. J. Vestib. Res. 1995, 5, 399–404. [Google Scholar] [CrossRef]
- Horiuchi, K.; Ishihara, M.; Imanaka, K. The essential role of optical flow in the peripheral visual field for stable quiet standing: Evidence from the use of a head-mounted display. PLoS ONE 2017, 12, e0184552. [Google Scholar] [CrossRef] [PubMed]
- Straube, A.; Krafczyk, S.; Paulus, W.; Brandt, T. Dependence of visual stabilization of postural sway on the cortical magnification factor of restricted visual fields. Exp. Brain Res. 1994, 99, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.J.; Braunstein, M.L. Induced self-motion in central vision. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Nougier, V.; Bard, C.; Fleury, M.; Teasdale, N. Contribution of central and peripheral vision to the regulation of stance: Developmental aspects. J. Exp. Child Psychol. 1998, 68, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, G. Topography of the layer of rods and cones in the human retina. Acta Ophthal. 1935, 13 (Suppl. 6), 11–97. [Google Scholar]
- Dacey, D.M. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found. Symp. 1994, 184, 12–28. [Google Scholar] [PubMed]
- Gattass, R.; Rosa, M.G.; Sousa, A.P.; Pinon, M.C.; Fiorani, M.J.; Neuenschwander, S. Cortical streams of visual information processing in primates. Braz. J. Med. Biol. Res. 1990, 23, 375–393. [Google Scholar] [PubMed]
- Goodale, M.A.; Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Ungerleider, L.G.; Haxby, J.V. ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 1994, 4, 157–165. [Google Scholar] [CrossRef]
- Ungerleider, L.G.; Mishkin, M. Two cortical visual systems. In Analysis of Visual Behaviour; Ingle, D.J., Goodale, M.A., Mansfield, R.J.W., Eds.; MIT Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Dearing, R.R.; Harris, L.R. The contribution of different parts of the visual field to the perception of upright. Vis. Res. 2011, 51, 2207–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, M.; Demura, S. Low visual acuity is associated with the decrease in postural sway. Tohoku J. Exp. Med. 2008, 216, 277–285. [Google Scholar] [CrossRef] [PubMed]
Central | Peripheral | Type of Stimuli | Protocol | Conclusions | |
---|---|---|---|---|---|
Andersen and Braunstein, 1985 | 7–21° | 7–21° | Random dots | Stimuli projected on a screen; stimuli translated along the line of sight | Central and peripheral field have complementary roles |
Berencsi et al. 2005 | 4–7° | Area adjacent to central field; Central field occluded | Random dots | Stimuli projected on a screen | Major role of periphery |
Brandt et al. 1973 | Up to 30° | Central occlusion up to 120° | Optokinetic stimuli | Rotating chair; wall painted with b/w stripes | Major role of periphery |
Horiuchi et al. 2017 | 8° | Area adjacent to central | Random dots | Stimuli projected on a screen or goggles | Major role of periphery |
Kawakita et al. 2000 | 14–33° | Area adjacent to central field; central field occluded | Random dots | Stimuli projected on a screen | Major role of periphery |
Nougier et al. 1998 | 10° | Area outside 20° of central occlusion | Environmental stimuli | Use of goggles | Central and peripheral field have complementary roles |
Piponnier et al. 2009 | 4–30° | Area adjacent to central field; central field occluded | 3D tunnel static or moving AP | Subject in a virtual environment | Major role of periphery |
Previc and Neel 1995 | 15–60° | 60–110° | Small squares | Virtual rotating surrounds | Major role of periphery |
Raffi et al. 2014 | 7° | Area outside 20° of central occlusion | Random dots | Stimuli projected on a screen | Major role of periphery |
Stoffregen 1985 | 20–60° | Stimulus projected from the side of the subject | Environmental stimuli | Stimuli projected in front of a screen for central, on the side for the periphery | Central and peripheral field have complementary roles |
Straube et al. 1994 | 1–8° | 10–30° of retinal eccentricity | Environmental stimuli | Subjects standings | Central and peripheral field have the same functional role |
Van Asten et al. 1988 | Up to 15° | Central occlusion of 15 × 30° | Black and white patterns | Stimuli projected on a screen simulating motion through a tunnel or along a wall | Central and peripheral field have complementary roles |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffi, M.; Piras, A. Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Visual Field. Appl. Sci. 2019, 9, 934. https://doi.org/10.3390/app9050934
Raffi M, Piras A. Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Visual Field. Applied Sciences. 2019; 9(5):934. https://doi.org/10.3390/app9050934
Chicago/Turabian StyleRaffi, Milena, and Alessandro Piras. 2019. "Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Visual Field" Applied Sciences 9, no. 5: 934. https://doi.org/10.3390/app9050934
APA StyleRaffi, M., & Piras, A. (2019). Investigating the Crucial Role of Optic Flow in Postural Control: Central vs. Peripheral Visual Field. Applied Sciences, 9(5), 934. https://doi.org/10.3390/app9050934