Relationship between Winter Precipitation in Barents–Kara Seas and September–October Eastern Siberian Sea Ice Anomalies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. HadISST1 Datasets
2.1.2. NCEP/DOE Reanalysis Data
2.1.3. Global Precipitation Climatology (GPC) Monthly Dataset
2.1.4. AO Index and NAO Index
2.2. Methods
2.2.1. Correlation Analysis
2.2.2. Statistical Significance
2.2.3. Mean Composite Analyses
2.2.4. Mann–Kendall Test
3. Results
3.1. The Winter Precipitation Anomalies in the Barents–Kara Sea
3.2. Autumn Eastern Siberian Sea Ice Affecting the Winter BKS Precipitation
3.3. Winter Atmospheric Circulation Anomalies Associated with Autumnal Eastern Siberian Sea Ice Extent Anomalies
3.4. The Winter BKS Air Temperature Associated with the BKS Winter Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lemke, P.; Harder, M.; Hilmer, M. The Response of Arctic Sea Ice to Global Change. Clim. Chang. 2000, 46, 277–287. [Google Scholar] [CrossRef]
- Bader, J.; Mesquita, M.D.S.; Hodges, K.I.; Keenlyside, N.; Østerhus, S.; Miles, M. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res. 2011, 101, 809–834. [Google Scholar] [CrossRef]
- Comiso, J.C. A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett. 2002, 29, 17-1–17-4. [Google Scholar] [CrossRef]
- Comiso, J.C. Large Decadal Decline of the Arctic Multiyear Ice Cover. J. Clim. 2011, 25, 1176–1193. [Google Scholar] [CrossRef]
- Wu, B.; Wang, J.; Walsh, J.E. Dipole Anomaly in the Winter Arctic Atmosphere and Its Association with Sea Ice Motion. J. Clim. 2006, 19, 210–225. [Google Scholar] [CrossRef]
- Serreze, M.C.; Stroeve, J.; Barrett, A.P.; Boisvert, L.N. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. J. Geophys. Res. Atmos. 2016, 121, 11463–11485. [Google Scholar] [CrossRef]
- Ogi, M.; Yamazaki, K.; Tachibana, Y. The summer northern annular mode and abnormal summer weather in 2003. Geophys. Res. Lett. 2005, 32, 353–368. [Google Scholar] [CrossRef]
- Ogi, M.; Rysgaard, S.; Barber, D.G. Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environ. Res. Lett. 2016, 11, 034019. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xu, H.; Guan, Z. Relationship of spring Greenland sea ice with summer surface air temperature and rainfall in China. J. Nanjing Inst. Meteorol. 2001, 24, 483–490. [Google Scholar]
- Li, F.; Wang, H. Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia. J. Clim. 2013, 26, 3968–3981. [Google Scholar] [CrossRef]
- Honda, M.; Inoue, J.; Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 2009, 36, 262–275. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Walsh, J.E.; Kim, Y.; Nakai, T.; Ohata, T. The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Sci. 2013, 7, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Jia, W. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Adv. Atmos. Sci. 2002, 19, 297–320. [Google Scholar]
- Liu, N.; Lin, L.; Wang, Y.; Kong, B.; Zhang, Z.; Chen, H. Arctic autumn sea ice decline and Asian winter temperature anomaly. Acta Oceanol. Sin. 2016, 35, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Kattsov, V.M.; Walsh, J.E.; Chapman, W.L.; Govorkova, V.A.; Pavlova, T.V.; Zhang, X. Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models. J. Hydrometeorol. 2009, 8, 571–589. [Google Scholar] [CrossRef]
- Bintanja, R.; Selten, F.M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.J.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Clim. Dyn. 2012, 38, 2243–2256. [Google Scholar] [CrossRef]
- Alexeev, V.A.; Langen, P.L.; Bates, J.R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dyn. 2005, 24, 655–666. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Barrett, A.; Kindig, D.N. Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2011, 63, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.E.; Cassano, J.J. Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res. Atmos. 2009, 114, D16107. [Google Scholar] [CrossRef]
- Gimenosotelo, L.; Nieto, R.; Vazquez, M.; Gimeno, L. A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth Syst. Dyn. Discuss. 2018, 9, 611–625. [Google Scholar] [CrossRef]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Battisti, D.S.; Po-Chedley, S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Harnos, K.; Zhang, Q.; Eastman, R.; et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Chang. 2017, 7, 289–295. [Google Scholar] [CrossRef]
- Ogi, M.; Wallace, J.M. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett. 2007, 34, 107–124. [Google Scholar] [CrossRef]
- Zuo, J.; Ren, H.L.; Wu, B.; Li, W. Predictability of winter temperature in China from previous autumn Arctic sea ice. Clim. Dyn. 2016, 47, 2331–2343. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Magnusdottir, G. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration. J. Geophys. Res. 2017, 122, 5316–5329. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 158, 240–242. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1990; p. 108. [Google Scholar]
- Panagiotopoulos, F.; Shahgedanova, M.; Hannachi, A.; Stephenson, D.B. Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Clim. 2005, 18, 1411–1422. [Google Scholar] [CrossRef]
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques. J. Geophys. Res. 2017, 122, 6883–6900. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, J.; Wang, Z.; Li, Z.; Huang, F. Arctic Amplification Produced by Sea Ice Retreat and Its Global Climate Effects. Adv. Earth Sci. 2015, 30, 985–995. [Google Scholar]
- Kumar, A.; Perlwitz, J.; Eischeid, J.; Quan, X.; Xu, T.; Zhang, T.; Hoerling, M.; Jha, B.; Wang, W. Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett. 2010, 37, 389–400. [Google Scholar] [CrossRef]
- Kopec, B.G.; Feng, X.; Michel, F.A.; Posmentier, E.S. Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. USA 2015, 113, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wu, Y.; Simpson, I.R.; Smith, K.L.; Zhang, X.; De, B.; Callaghan, P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 2018, 4, eaat6025. [Google Scholar] [CrossRef]
- Wu, B.Y.; Su, J.Z.; Zhang, R.H. Effects of autumn-winter Artic sea ice on winter Siberian High. Chin. Sci. Bull 2011, 56, 2335–2343. [Google Scholar] [CrossRef]
Sep | Oct | Sep–Oct | |
---|---|---|---|
DJF SH | −0.50 *** | −0.50 *** | −0.50 *** |
DJF AO | 0.24 | 0.31 * | 0.30 * |
DJF NAO | 0.04 | 0.11 | 0.07 |
NAO | AO | SH | |
---|---|---|---|
R | 0.08 | −0.04 | 0.58 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Zhang, Y.; Ke, C. Relationship between Winter Precipitation in Barents–Kara Seas and September–October Eastern Siberian Sea Ice Anomalies. Appl. Sci. 2019, 9, 1091. https://doi.org/10.3390/app9061091
Feng J, Zhang Y, Ke C. Relationship between Winter Precipitation in Barents–Kara Seas and September–October Eastern Siberian Sea Ice Anomalies. Applied Sciences. 2019; 9(6):1091. https://doi.org/10.3390/app9061091
Chicago/Turabian StyleFeng, Jiajun, Yuanzhi Zhang, and Changqing Ke. 2019. "Relationship between Winter Precipitation in Barents–Kara Seas and September–October Eastern Siberian Sea Ice Anomalies" Applied Sciences 9, no. 6: 1091. https://doi.org/10.3390/app9061091
APA StyleFeng, J., Zhang, Y., & Ke, C. (2019). Relationship between Winter Precipitation in Barents–Kara Seas and September–October Eastern Siberian Sea Ice Anomalies. Applied Sciences, 9(6), 1091. https://doi.org/10.3390/app9061091