Identifying Key Sources of City Air Quality: A Hybrid MCDM Model and Improvement Strategies
Abstract
:Featured Application
Abstract
1. Introduction
2. Literature Review
2.1. Stationary Air Pollution Sources
2.2. Mobile Air Pollution Sources
3. Methodology
Conceptual Explanation of The Series of Integrative Methodologies
4. Empirical Case of a Metropolitan Area of Taiwan
4.1. Background and Problem Descriptions
4.2. Data Collection
4.3. Analysis of Results
5. Discussion
6. Conclusions and Limitation
Author Contributions
Funding
Conflicts of Interest
References
- OECD. The Cost of Air Pollution: Health Impacts of Road Transport. OECD Publishing, 2014. Available online: https://doi.org/10.1787/9789264210448-en (accessed on 22 October 2017).
- World Health Organization. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. World Health Statistics. 2017. Available online: http://www.who.int/gho/publications/world_health_statistics/zh (accessed on 23 October 2017).
- Cai, J.; Yu, S.; Pei, Y.; Peng, C.; Liao, Y.; Liu, N.; Ji, J.; Cheng, J. Association between Airborne Fine Particulate Matter and Residents’ Cardiovascular Diseases, Ischemic Heart Disease and Cerebral Vascular Disease Mortality in Areas with Lighter Air Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 1918. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Association between the First Occurrence of Allergic Rhinitis in Preschool Children and Air Pollution in Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 268. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Z.; Yang, T. Health Effects of Air Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 1471. [Google Scholar] [CrossRef] [PubMed]
- Mad Saad, S.; Andrew, A.M.; Md Shakaff, A.Y.; Mat Dzahir, M.A.; Hussein, M.; Mohamad, M.; Ahmad, Z.A. Pollutant Recognition Based on Supervised Machine Learning for Indoor Air Quality Monitoring Systems. Appl. Sci. 2017, 7, 823. [Google Scholar] [CrossRef]
- Gao, G.; Zeng, X.; An, C.; Yu, L. A sustainable industry-environment model for the identification of urban environmental risk to confront air pollution in Beijing, China. Sustainability 2018, 10, 962. [Google Scholar] [CrossRef]
- Hossain, A.M. Unsustainability at the crossroads of climate change and air pollution sciences: Implications for sustainable development and the scholarship of sustainability. Sustain. Dev. 2018, 26, 415–421. [Google Scholar] [CrossRef]
- Shi, L.; Zanobetti, A.; Kloog, I.; Coul, B.A.; Koutrakis, P.; Melly, S.J.; Schwartz, J.D. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2015, 124, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Administration: Taipei, Taiwan, 2018. Available online: http://www.epa.gov.tw (accessed on 20 May 2018).
- Ministry of Health and Welfare. 2016. Available online: https://www.mohw.gov.tw (accessed on 25 October 2017).
- Kleijnen, J.P.C. An overview of design and analysis of simulation experiments for sensitivity analysis. Eur. J. Oper. Res. 2005, 164, 287–300. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Huang, C.Y. Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Ann. Oper. Res. 2012, 197, 1–32. [Google Scholar]
- Environmental Protection Administration: Taipei, Taiwan. 2017. Available online: https://www.epa.gov.tw (accessed on 15 October 2017).
- Chen, C.H.S.; Yuan, T.H.; Shie, R.H.; Wu, K.Y.; Chan, C.C. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants. Environ. Int. 2017, 102, 87–96. [Google Scholar] [CrossRef]
- Gingerich, D.B.; Mauter, M.S. Retrofitting the regulated power plant: Optimizing energy allocation to electricity generation, water treatment, and carbon capture processes at coal-fired generating facilities. ACS Sustain. Chem. Eng. 2018, 6, 2694–2703. [Google Scholar] [CrossRef]
- Cho, C.S.; Kim, M.W.; Kang, S.M.; Hong, Y.J.; Jeon, E.C. Study on the variance of N2O concentration after air pollution prevention facility in bituminous coal-firing power plant. Energy Fuels 2017, 31, 4173–4178. [Google Scholar] [CrossRef]
- Slavícek, P.; Vráblík, M.; Pajdla, M. Gas Installation in boiler house of Hrusovany nad Jevisovkou sugar factory. Listy Cukrovarnické a Reparské 2013, 129, 308. [Google Scholar]
- Gou, Y.Y.; Hsu, Y.C.; Chao, H.R.; Que, D.E.; Tayo, L.L.; Lin, C.H. Shih; S.I. (Pollution characteristics and diurnal variations in polybrominated diphenyl ethers in indoor and outdoor air from vehicle dismantler factories in southern Taiwan. Aerosol Air Qual. Res. 2016, 16, 1931–1941. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Yuan, T.H.; Shie, R.H.; Chen, C.F.; Chan, C.C. Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution. Environ. Int. 2016, 96, 1–7. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Ji, M.K.; Kim, H.C.; Paeng, K.J.; Jeon, B.H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manag. 2013, 115, 257–264. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Ly, B.T.; Tipayarom, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Liu, L.J.S. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Giannadaki, D.; Giannakis, E.; Pozzer, A.; Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 2018, 622, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Van Deurssen, E.; Pronk, A.; Spaan, S.; Goede, H.; Tielemans, E.; Heederik, D.; Meijster, T. Quartz and respirable dust in the Dutch construction industry: A baseline exposure assessment as part of a multidimensional intervention approach. Ann. Occup. Hyg. 2014, 58, 724–738. [Google Scholar]
- Crilley, L.R.; Lucarelli, F.; Bloss, W.J.; Harrison, R.M.; Beddows, D.C.; Calzolai, G.; Vecchi, R. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut. 2017, 220, 766–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Zhang, X.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [Google Scholar] [CrossRef]
- Pansuk, J.; Junpen, A.; Garivait, S. Assessment of air pollution from household solid waste open burning in Thailand. Sustainability 2018, 10, 2553. [Google Scholar] [CrossRef]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Zhao, R.; Zhang, Y.; Bai, Z. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ. Pollut. 2017, 227, 24–30. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Cerqueira, M.; Nunes, T.; Duarte, M.; Vicente, E. Volatile organic compounds emitted by the stacks of restaurants. Air Qual. Atmos. Health. 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Lin, M.D.; Rau, J.Y.; Tseng, H.H.; Wey, M.Y.; Chu, C.W.; Lin, Y.H.; Lee, C.H. Characterizing PAH emission concentrations in ambient air during a large-scale joss paper open-burning event. J. Hazard. Mater. 2008, 156, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.R.; Lin, T.C.; Chang, F.H. Particle size distribution and PAH concentrations of incense smoke in a combustion chamber. Environ. Pollut. 2007, 145, 606–615. [Google Scholar] [CrossRef]
- Hu, M.T.; Chen, S.J.; Huang, K.L.; Lin, Y.C.; Chang-Chien, G.P.; Tsai, J.H. Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices. Sci. Total Environ. 2009, 407, 3290–3294. [Google Scholar] [CrossRef] [PubMed]
- Khezri, B.; Chan, Y.Y.; Tiong, L.Y.D.; Webster, R.D. Annual air pollution caused by the hungry ghost festival. Environ. Sci. Process. Impacts 2015, 17, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.Y.; Hsieh, C.Y.; Hu, C.W.; Chen, S.C.; Yang, H.J. PM10 concentration in relation to clinic visits for anxiety disorders: A population-based study of a high river-dust episode region in Taiwan. Air Qual. Atmos. Health 2018, 11, 221–227. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Yang, H.J.; Chiang, Y.C.; Lai, D.J.; Shen, Y.H.; Liu, P.M. Concentration and composition variations of metals in the outdoor PM10 of elementary schools during river dust episodes. Environ. Sci. Pollut. Res. 2014, 21, 12354–12363. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Kashima, S. Fine-particulate air pollution from diesel emission control and mortality rates in Tokyo. Epidemiology 2016, 27, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Adheesh, S.R.; Vasisht, M.; Ramasesha, S. Air-pollution and economics: Diesel bus versus electric bus. Curr. Sci. 2016, 110, 858–862. [Google Scholar]
- Quiros, D.C.; Smith, J.; Thiruvengadam, A.; Huai, T.; Hu, S. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport. Atmos. Environ. 2017, 168, 36–45. [Google Scholar] [CrossRef]
- Shin, G.Y.; Manuel, R.J. London should ban all diesel vehicles. BMJ 2017, 358, j3288. [Google Scholar] [CrossRef] [PubMed]
- Platt, S.M.; Haddad, I.E.; Pieber, S.M.; Huang, R.J.; Zardini, A.A.; Clairotte, M.; Slowik, J.G. Two-stroke scooters are a dominant source of air pollution in many cities. Nat. Commun. 2014, 5, 3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duc, K.N.; Duy, V.N. Study on performance enhancement and emission reduction of used fuel-injected motorcycles using bi-fuel gasoline-LPG. Energy Sustain. Dev. 2018, 43, 60–67. [Google Scholar] [CrossRef]
- Lawin, H.; Fanou, L.A.; Hinson, V.; Tollo, B.; Fayomi, B.; Ouendo, E.M. Occupational risk factors and perceptions of air pollution by motorcycle taxi drivers in Cotonou, Benin. Santé Publique 2018, 30, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Claremar, B.; Rutgersson, A.; Haglund, K. Ship emissions and the use of current air cleaning technology: Contributions to air pollution and acidification in the Baltic Sea. Earth Syst. Dyn. 2017, 8, 901–919. [Google Scholar] [CrossRef]
- González, Y.; Rodríguez, S.; García, J.C.G.; Trujillo, J.L.; García, R. Ultrafine particles pollution in urban coastal air due to ship emissions. Atmos. Environ. 2011, 45, 4907–4914. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Nelson, P.; Li, Y.; Zhao, N.; Zhao, Y.; Guo, X. Ship emission inventory and its impact on the PM2. 5 air pollution in Qingdao Port, North China. Atmos. Environ. 2017, 166, 351–361. [Google Scholar] [CrossRef]
- Wiłkomirski, B.; Sudnik-Wójcikowska, B.; Galera, H.; Wierzbicka, M.; Malawska, M. Railway transportation as a serious source of organic and inorganic pollution. Water Air Soil Pollut. 2011, 218, 333–345. [Google Scholar] [CrossRef]
- Stojic, N.; Pucarevic, M.; Stojic, G. Railway transportation as a source of soil pollution. Transp. Res. D Transp. Environ. 2017, 57, 124–129. [Google Scholar] [CrossRef]
- Ouyang, Y.P.; Shieh, H.M.; Tzeng, G.H. A VIKOR technique based on DEMATEL and ANP for information security risk control assessment. Inf. Sci. 2013, 232, 482–500. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Shen, K.Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press; Taylor and Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Centre: Geneva, Switzerland, 1972. [Google Scholar]
- Tzeng, G.H.; Chiang, C.H.; Li, C.W. Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst. Appl. 2007, 32, 1028–1044. [Google Scholar] [CrossRef]
- Ouyang, Y.P.; Shieh, H.M.; Leu, J.D.; Tzeng, G.H. A novel hybrid MCDM model combined with DEMATEL and ANP with applications. Int. J. Oper. Res. 2008, 5, 1–9. [Google Scholar]
- Hu, K.H.; Chen, F.H.; Tzeng, G.H. Evaluating the improvement of sustainability of sports industry policy based on MADM. Sustainability 2016, 8, 606. [Google Scholar] [CrossRef]
- Liou, J.J.; Tsai, C.Y.; Lin, R.H.; Tzeng, G.H. A modified VIKOR multiple-criteria decision method for improving domestic airlines service quality. J. Air Transp. Manag. 2011, 17, 57–61. [Google Scholar] [CrossRef]
- Chou, S.Y.; Yu, C.C.; Tzeng, G.H. A novel hybrid MCDM procedure for achieving aspired earned value project performance. Math. Probl. Eng. 2016, 2016, 9721726. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega 2016, 59, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Teng, C.L.; Zhu, B.W.; Tzeng, G.H.; Huang, S.L. Using the D-DANP-mV model to explore the continuous system improvement strategy for sustainable development of creative communities. Int. J. Environ. Res. Public Health 2017, 14, 1309. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, H.N.; Wang, H. A smart MCDM framework to evaluate the impact of air pollution on city sustainability: A case study from China. Sustainability 2017, 9, 911. [Google Scholar] [CrossRef]
- Qu, G.B.; Zhao, T.Y.; Zhu, B.W.; Tzeng, G.H.; Huang, S.L. Use of a Modified DANP-mV Model to Improve Quality of Life in Rural Residents: The Empirical Case of Xingshisi Village, China. Int. J. Environ. Res. Public Health 2019, 16, 153. [Google Scholar] [CrossRef]
- Ding, X.F.; Liu, H.C. A 2-dimension uncertain linguistic DEMATEL method for identifying critical success factors in emergency management. Appl. Soft Comput. 2018, 71, 386–395. [Google Scholar] [CrossRef]
- Bouzon, M.; Govindan, K.; Rodriguez, C.M.T. Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resour. Conserv. Recy. 2018, 128, 315–335. [Google Scholar] [CrossRef]
- Lu, M.T.; Lin, S.W.; Tzeng, G.H. Improving RFID adoption in Taiwan’s healthcare industry based on a DEMATEL technique with a hybrid MCDM model. Decis. Support Syst. 2013, 56, 259–269. [Google Scholar] [CrossRef]
- Zhang, X.P.; Cheng, X.M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Hossain, M.S. Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries. Energy Policy 2011, 39, 6991–6999. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, J.; Ying, Q.; Hao, H.; Wang, D.; Zhang, H. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Sci. Total Environ. 2017, 595, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Tähtinen, K.; Lappalainen, S.; Karvala, K.; Lahtinen, M.; Salonen, H. Probability of Abnormal Indoor Air Exposure Categories Compared with Occupants’ Symptoms, Health Information, and Psychosocial Work Environment. Appl. Sci. 2019, 9, 99. [Google Scholar] [CrossRef]
- Fan, B.; Wen, C.; Zeng, X.; Wu, J.; Yu, X. Emission behaviors of inorganic ultrafine particles during Zhundong coal oxy-fuel combustion with characterized oxygen input fractions comparable to air combustion. Appl. Sci. 2018, 8, 1486. [Google Scholar] [CrossRef]
Dimensions/Criteria | Descriptions |
---|---|
Stationary air pollution sources (D1) | |
Coal-fired power plants (C11) | Older power plants firing coal or oil. |
Factories (C12) | Factory emissions exceeding the acceptable level. |
Agriculture-related emissions (C13) | Agricultural waste burning. |
Construction dust (C14) | Dust from construction sites. |
Cooking fumes (C15) | Oil fumes from restaurants without recycling devices. |
Customs (C16) | Joss paper burning in traditional ceremonies. |
River dust (C17) | Dust from dry river beds. |
Mobile air pollution sources (D2) | |
Diesel vehicles (C21) | Diesel vehicle without the installation of filters. |
Scooters (C22) | Two-stroke scooters emitting high PM2.5 concentrations. |
Ship emissions (C23) | Ships emission entering and leaving the port. |
Railway transportation (C24) | Railway transportation equipment emissions. |
Dimensions/Criteria | o | p | o + p | o − p |
---|---|---|---|---|
Stationary air pollution sources (D1) | 0.35 | 0.30 | 0.65 | 0.04 |
Coal-fired power plants (C11) | 2.98 | 3.17 | 6.15 | −0.19 |
Factories (C12) | 3.11 | 2.72 | 5.83 | 0.39 |
Agriculture-related emissions (C13) | 1.26 | 2.25 | 3.51 | −0.99 |
Construction dust (C14) | 1.93 | 2.60 | 4.53 | −0.67 |
Cooking fumes (C15) | 1.57 | 2.22 | 3.79 | −0.65 |
Customs (C16) | 1.28 | 3.56 | 4.84 | −2.27 |
River dust (C17) | 0.73 | 1.85 | 2.57 | −1.12 |
Mobile air pollution sources (D2) | 0.33 | 0.38 | 0.71 | −0.04 |
Diesel vehicles (C21) | 2.20 | 3.58 | 5.79 | −1.38 |
Scooters (C22) | 1.83 | 2.45 | 4.29 | −0.62 |
Ship emissions (C23) | 0.88 | 3.26 | 4.14 | −2.38 |
Railway transportation (C24) | 2.21 | 3.26 | 5.46 | −1.05 |
Dimensions/Criteria | Local Weights | Global Weights | Performance | Gap |
---|---|---|---|---|
Stationary air pollution sources (D1) | 0.44 | 2.27 | 0.43 | |
Coal-fired power plants (C11) | 0.14 | 0.06 | 1.00 | 0.75 |
Factories (C12) | 0.16 | 0.07 | 1.20 | 0.70 |
Agriculture-related emissions (C13) | 0.13 | 0.06 | 2.30 | 0.43 |
Construction dust (C14) | 0.14 | 0.06 | 2.90 | 0.28 |
Cooking fumes (C15) | 0.14 | 0.06 | 3.30 | 0.18 |
Customs (C16) | 0.16 | 0.07 | 3.00 | 0.25 |
River dust (C17) | 0.15 | 0.07 | 2.30 | 0.43 |
Mobile air pollution sources (D2) | 0.56 | 1.61 | 0.60 | |
Diesel vehicles (C21) | 0.22 | 0.12 | 1.10 | 0.73 |
Scooters (C22) | 0.33 | 0.18 | 1.00 | 0.75 |
Ship emissions (C23) | 0.26 | 0.15 | 2.30 | 0.43 |
Railway transportation (C24) | 0.19 | 0.11 | 2.30 | 0.43 |
Total performance | 1.90 | |||
Total gap | 0.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-H.; Yien, J.-M.; Chiang, C.-H.; Tsai, P.-C.; Tsai, F.-S. Identifying Key Sources of City Air Quality: A Hybrid MCDM Model and Improvement Strategies. Appl. Sci. 2019, 9, 1414. https://doi.org/10.3390/app9071414
Chen K-H, Yien J-M, Chiang C-H, Tsai P-C, Tsai F-S. Identifying Key Sources of City Air Quality: A Hybrid MCDM Model and Improvement Strategies. Applied Sciences. 2019; 9(7):1414. https://doi.org/10.3390/app9071414
Chicago/Turabian StyleChen, Kou-Hsiung, Jui-Mei Yien, Cheng-Hsin Chiang, Pei-Chun Tsai, and Fu-Sheng Tsai. 2019. "Identifying Key Sources of City Air Quality: A Hybrid MCDM Model and Improvement Strategies" Applied Sciences 9, no. 7: 1414. https://doi.org/10.3390/app9071414
APA StyleChen, K. -H., Yien, J. -M., Chiang, C. -H., Tsai, P. -C., & Tsai, F. -S. (2019). Identifying Key Sources of City Air Quality: A Hybrid MCDM Model and Improvement Strategies. Applied Sciences, 9(7), 1414. https://doi.org/10.3390/app9071414