Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wing Model with Multiple Flaps and Optical Fiber Sensors
2.2. Wind Tunnel Test
2.3. Load Identification Method
3. Results: Load Identification
4. Discussion: AoA Identification
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, N.; Ting, E.; Chaparro, D.; Drew, M.; Swei, S. Multi-objective flight control for drag minimization and load alleviation of high-aspect ratio flexible wing aircraft. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Tang, D.; Dowell, E.H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J. 2001, 39, 1430–1441. [Google Scholar] [CrossRef]
- Tang, D.; Dowell, E.H. Experimental and theoretical study of gust response for high-aspect-ratio wing. AIAA J. 2002, 40, 419–429. [Google Scholar] [CrossRef]
- Tang, D.; Grasch, A.; Dowell, E.H. Gust response for flexibly suspended high-aspect ratio wings. AIAA J. 2010, 48, 2430–2444. [Google Scholar] [CrossRef]
- Mohamed, A.; Massey, K.; Watkins, S.; Clothier, R. The attitude control of fixed-wing MAVs in turbulent environments. Prog. Aerosp. Sci. 2014, 66, 37–48. [Google Scholar] [CrossRef]
- Mohamed, A.; Clothier, R.; Watkins, S.; Sabatini, R.; Abdulrahim, M. Fixed-wing MAV attitude stability in atmospheric turbulence, part 1: Suitability of conventional sensors. Prog. Aerosp. Sci. 2014, 70, 69–82. [Google Scholar] [CrossRef]
- Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R. Fixed-wing MAV attitude stability in atmospheric turbulence, part 2: Investigating biologically-inspired sensors. Prog. Aerosp. Sci. 2014, 71, 1–13. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM: Philadelphia, PA, USA, 2005; ISBN 978-0898715729. [Google Scholar]
- Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms; SIAM: Philadelphia, PA, USA, 2010; ISBN 978-0898716962. [Google Scholar]
- Aster, R.C.; Borchers, B.; Thurber, C.H. Parameter Estimation and Inverse Problems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 978-0123850485. [Google Scholar]
- Shkarayev, S.; Krashantisa, R.; Tessler, A. An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural response of aerospace vehicles. In Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2001. [Google Scholar]
- Coates, C.W.; Thamburaj, P. Inverse method using finite strain measurement to determine flight load distribution functions. J. Aircr. 2008, 45, 366–370. [Google Scholar] [CrossRef]
- Nakamura, T.; Igawa, H.; Kanda, A. Inverse identification of continuously distributed loads using strain data. Aerosp. Sci. Technol. 2012, 23, 75–84. [Google Scholar] [CrossRef]
- Cao, X.; Sugiyama, Y.; Mitsui, Y. Application of artificial neural networks to load identification. Comput. Struct. 1998, 69, 63–78. [Google Scholar] [CrossRef]
- Trivailo, P.M.; Carn, C.L. The inverse determination of aerodynamic loading from structural response data using neural networks. Inverse Prob. Sci. Eng. 2006, 14, 379–395. [Google Scholar] [CrossRef]
- Wada, D.; Sugimoto, Y.; Murayama, H.; Igawa, H.; Nakamura, T. Investigation of inverse analysis approach and neural network approach for distributed load identification using distributed strains. Trans. Jpn. Soc. Aeronaut. Space Soc. 2019, 62. [Google Scholar]
- Carpenter, T.J.; Albertani, R. Aerodynamic load estimation from virtual strain sensors for a pliant membrane wing. AIAA J. 2015, 53, 2069–2079. [Google Scholar] [CrossRef]
- Wada, D.; Igawa, H.; Kasai, T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique. Appl. Opt. 2016, 55, 6953–6959. [Google Scholar] [CrossRef] [PubMed]
- Wada, D.; Igawa, H.; Tamayama, M.; Kasai, T.; Arizono, H.; Murayama, H. Flight demonstration of aircraft wing monitoring using optical fiber distributed sensing system. Smart Mater. Struct. 2019, 28, 055007. [Google Scholar] [CrossRef]
- Pak, C. Wing shape sensing from measured strain. AIAA J. 2016, 54, 1064–1073. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.; Kum, Y.; Shrestha, P.; Kim, C. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure. Smart Mater. Struct. 2015, 24, 105003. [Google Scholar] [CrossRef]
- Kressel, I.; Balter, J.; Mashiach, N.; Sovran, I.; Shapira, O.; Shemesh, N.Y.; Glamm, B.; Dvorjetski, A.; Yehoshua, T.; Tur, M. High speed, in-flight structural health monitoring system for medium altitude long endurance unmanned air vehicle. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Lance, R.; Allen, R.P., Jr.; Anthony, P.; Patrick, C.; Harmory, P.; Pena, F. NASA Armstrong Flight Research Center (AFRC). Fiber Optic Sensing System (FOSS) Technology; NASA Technical Reports Server: Edwards, CA, USA, 2014.
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Widrow, B. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990. [Google Scholar]
Segment No. | Position Z of Flap Center (m) | Span-Wise Flap Length (m) | Chord Length (mm) | Flap Width (mm) |
---|---|---|---|---|
1 | 0.277 | 0.472 | 297 | 54 |
2 | 0.749 | 0.472 | 283 | 51 |
3 | 1.221 | 0.472 | 271 | 48 |
4 | 1.686 | 0.458 | 258 | 45 |
5 | 2.144 | 0.458 | 243 | 43 |
6 | 2.602 | 0.458 | 226 | 40 |
7 | 3.025 | 0.388 | 208 | 39 |
8 | 3.413 | 0.388 | 186 | 37 |
Port | Position X/C | Position Y/C | Normal Direction (deg) |
---|---|---|---|
(leading edge) | 0 | 0 | 180 |
u1 | 0.02 | 0.024 | 125 |
u2 | 0.03 | 0.037 | 117 |
u3 | 0.06 | 0.047 | 110 |
u4 | 0.08 | 0.057 | 107 |
u5 | 0.13 | 0.067 | 102 |
u6 | 0.19 | 0.077 | 98 |
u7 | 0.24 | 0.084 | 96 |
u8 | 0.29 | 0.088 | 94 |
u9 | 0.42 | 0.088 | 90 |
u10 | 0.52 | 0.084 | 87 |
u11 | 0.61 | 0.077 | 84 |
u12 | 0.70 | 0.064 | 82 |
u13 | 0.79 | 0.047 | 80 |
u14 | 0.87 | 0.034 | 79 |
u15 | 0.93 | 0.020 | 77 |
b1 | 0.07 | −0.030 | 260 |
b2 | 0.17 | −0.040 | 267 |
b3 | 0.29 | −0.044 | 270 |
b4 | 0.42 | −0.040 | 273 |
b5 | 0.56 | −0.034 | 275 |
b6 | 0.70 | −0.020 | 276 |
b7 | 0.79 | −0.013 | 276 |
b8 | 0.87 | −0.0067 | 274 |
(trailing edge) | 1 | 0 | 0 |
(main spar) | 0.30–0.40 | −0.043–0.091 | - |
(aft spar) | 0.74–0.76 | −0.017–0.057 | - |
Type | AoA (deg) | Measurements at Each AoA (Total Measurements) |
---|---|---|
Aligned | −4.0, −3.0, −2.0, –10.0 (15 cases) | 1 time (15 times) |
Random | −4.0, −3.5, −3.0, –10.0 (29 cases) | 10 times (290 times) |
Single | −4.0, −2.0, 0.0, –10.0 (8 cases) | 32 times (256 times) |
Controlled | −4.0, −3.0, −2.0, –10.0 (14 cases *) | 1 time (14 times) |
Flap No. | Flap Angle Variation Rate (deg/test case) |
---|---|
1 | 9.8 |
2 | 7.2 |
3 | 5.7 |
4 | 4.8 |
5 | 3.6 |
6 | 2.6 |
7 | 1.9 |
8 | 1.2 |
Flap No. | Flap Angle (deg) |
---|---|
1 | 15.0 |
2 | 15.0 |
3 | 13.0 |
4 | 0.8 |
5 | −12.1 |
6 | −15.0 |
7 | −15.0 |
8 | −15.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wada, D.; Tamayama, M. Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test. Appl. Sci. 2019, 9, 1461. https://doi.org/10.3390/app9071461
Wada D, Tamayama M. Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test. Applied Sciences. 2019; 9(7):1461. https://doi.org/10.3390/app9071461
Chicago/Turabian StyleWada, Daichi, and Masato Tamayama. 2019. "Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test" Applied Sciences 9, no. 7: 1461. https://doi.org/10.3390/app9071461
APA StyleWada, D., & Tamayama, M. (2019). Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test. Applied Sciences, 9(7), 1461. https://doi.org/10.3390/app9071461