Physical and Mechanical Characteristics of Soft Rock Tunnel and the Effect of Excavation on Supporting Structure
Abstract
:1. Introduction
2. Physical and Mechanical Test
2.1. Project Overview
2.2. Mineral Composition Test
2.3. Free Expansion Rate Test and Expansion Test
2.4. Rock Mechanics Test
2.4.1. Weathering Effect
2.4.2. Water Effect
2.4.3. Confining Pressure Effect
3. Field Test
3.1. Test Items and Methods
3.2. Second Lining Strain
3.3. Steel Arch Stress
3.4. Contact Pressure Between Rock Mass and Initial Support
3.5. Bolt Force
3.6. Clearance Convergence Deformation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, H.T.; Zhang, Z.W.; Chen, J.T.; Bobet, A.; Zhao, M.; Yuan, Y. Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition. Tunn. Undergr. Space Technol. 2018, 77, 103–114. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Q.; Zhang, D.L. Mechanical responses of existing tunnel due to new tunnelling below without clearance. Tunn. Undergr. Space Technol. 2018, 80, 44–52. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, H.T.; Li, C.; Yan, X.; Yuan, J.Y. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings—Part I: Theory and validation. Soil Dyn. Earthq Eng. 2018, 108, 177–186. [Google Scholar] [CrossRef]
- Yu, H.T.; Yuan, Y.; Xu, G.P.; Su, Q.K.; Yan, X.; Li, C. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings—Part II: Application to the HZM immersed tunnel. Soil Dyn. Earthq. Eng. 2018, 108, 187–195. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhang, H.; Tan, Y.J.; Yang, H.Y. Natural wind utilization in the vertical shaft of a super-long highway tunnel and its energy saving effect. Build. Environ. 2018, 145, 140–152. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Chen, S.; Sun, J.; Yang, J. The spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel group. Energies 2018, 11, 3257. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, R.; Jiang, B.; Li, S.C.; He, M.C.; Sun, H.B.; Wang, L.; Qin, Q.; Yu, H.C.; Luan, Y.C. Study on failure mechanism of roadway with soft rock in deep coal mine and confined concrete support system. Eng. Fail Anal. 2017, 81, 155–177. [Google Scholar] [CrossRef]
- Wang, R.J.; Li, C.; Xu, J.H.; Pan, L.J. Development and verification of large deformation model considering stiffness deterioration and shear dilation effect in FLAC3D. Int. J. Min. Sci. Technol. 2018, 28, 959–967. [Google Scholar] [CrossRef]
- Yadav, S.; Saldana, C.; Murthy, T.G. Experimental investigations on deformation of soft rock during cutting. Int. J. Rock Mech. Min. Sci. 2018, 105, 123–132. [Google Scholar] [CrossRef]
- Yang, Z.M.; Wu, S.C.; Gao, Y.T.; Jin, A.B.; Cong, Z.J. Time and technique of rehabilitation for large deformation of tunnels in jointed rock masses based on FDM and DEM numerical modeling. Tunn. Undergr. Space Technol. 2018, 81, 669–681. [Google Scholar] [CrossRef]
- Guan, K.; Zhu, W.C.; Wei, J.; Liu, X.G.; Niu, L.L.; Wang, X.R. A finite strain numerical procedure for a circular tunnel in strain-softening rock mass with large deformation. Int. J. Rock Mech. Min. Sci. 2018, 112, 266–280. [Google Scholar] [CrossRef]
- Guo, Z.B.; Wang, J.; Zhang, Y.L. Failure mechanism and supporting measures for large deformation of Tertiary deep soft rock. Int. J. Min. Sci. Technol. 2015, 25, 121–126. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Shi, X.Q.; Wang, B.; Li, H.Y. Stability of NATM tunnel faces in soft surrounding rocks. Comput. Geotech. 2018, 96, 90–102. [Google Scholar] [CrossRef]
- Xu, L.S. Research of rockburst character and prevention measure in Erlang Mountain Highway Tunnel. China Civ. Eng. J. 2004, 37, 61–64. [Google Scholar]
- Ma, J.H.; Liu, H.Z. Evaluation on support pressure of composite lining in Huaying. Ground Pressure Strata Contr. 2003, 4, 17–20. [Google Scholar]
- Liu, Z.C.; Zhu, Y.Q.; Li, W.J.; Liu, B.X. Mechanism and classification criterion for large deformation of squeezing ground tunnels. Chin. J. Geotech. Eng. 2008, 30, 690–697. [Google Scholar]
- Kang, H.M.; Li, X.H.; Li, T.L.; Jin, X.G.; Zhang, D.M. Construction and safety monitoring in section across coal layer of Huayingshan Tunnel. Chin. J. Rock Mech. Eng. 2001, 20, 936–939. [Google Scholar]
- Egger, P. Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks). Tunn. Undergr. Space Technol. 2000, 15, 403–408. [Google Scholar] [CrossRef]
- Liu, Z.C.; Li, W.J.; Sun, M.L.; Zhu, Y.Q. Monitoring and comprehensive analysis in F4 section of Wuqiaoling Tunnel. Chin. J. Rock. Mech. Eng. 2006, 25, 1502–1511. [Google Scholar]
- Wang, S.R.; Li, C.L.; Liu, Z.W.; Fang, J.B. Optimization of construction scheme and supporting technology for HJS soft rock tunnel. Int. J. Min. Sci. Technol. 2014, 24, 847–852. [Google Scholar] [CrossRef]
- Ongodia, J.E.; Kalumba, D.; Mutikanga, H.E. An account of tunnel support systems for soft rock mass conditions. In Proceedings of the 1st Southern African Geotechnical Conference, Sun City, South Africa, 5–6 May 2016; pp. 205–214. [Google Scholar]
- He, M. Latest progress of soft rock mechanics and engineering in China. J. Rock Mech. Geotech. Eng. 2014, 6, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Hoek, E. Big tunnels in bad rock. J. Geotech. Geoenviron. 2001, 127, 726–740. [Google Scholar] [CrossRef]
- Kanji, M.A. Critical issues in soft rocks. J. Rock Mech. Geotech. Eng. 2014, 6, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Terzaghi, K. Rock Defects and Loads on Tunnel Supports; Harvard University: Cambridge, MA, USA, 1946. [Google Scholar]
- Barla, G. Squeezing rocks in tunnels. ISRM News J. 1995, 2, 44–49. [Google Scholar]
- Tan, T.K.; Wen, X.M. Swelling rocks and stability of tunnels. Chin. J. Rock Mech. Eng. 1983, 1, 1–10. [Google Scholar]
- Anagnostou, G. A model for swelling rock in tunneling. Rock Mech. Rock Eng. 1993, 4, 307–331. [Google Scholar] [CrossRef]
- Singh, B.; Goel, R.K.; Jethwa, J.L.; Dude, A.K. Support pressure assessment in arched underground openings through poor rock masses. Eng. Geol. 1997, 48, 59–81. [Google Scholar] [CrossRef]
- Jiang, Y.; Yoneda, H.; Tanabashi, Y. Theoretical estimation of loosening pressure on tunnels in soft rocks. Tunn. Undergr. Space Technol. 2001, 16, 99–105. [Google Scholar] [CrossRef]
- Kovari, K.; Amstad, C.; Anagnostou, G. Design/construction methods–Tunnelling in swelling rocks. In Proceedings of the 29th U.S. Symposium on Rock Mechanics, Minneapolis, MN, USA, 13–15 June 1988; pp. 17–32. [Google Scholar]
- Li, L.P.; Wang, Q.H.; Li, S.C.; Huang, H.W.; Shi, S.S.; Wang, K.; Lei, T.; Chen, D.Y. Cause analysis of soft and hard rock tunnel collapse and information management. Pol. J. Environ. Stud. 2014, 23, 1227–1233. [Google Scholar]
- Zhang, X.; Li, J.; Liu, J.; Peng, W. Research on deformation characteristics of strong expansive soft rock roadway and its control strategy. J. China Univ. Min. Technol. 2017, 46, 493–500. [Google Scholar]
- Yuan, Y.; Zhu, Y.; Wang, W.; Yu, W. Failure mechanism of Mesozoic soft rock roadway in Shajihai coal mine and its surrounding rock control. Int. J. Min. Sci. Technol. 2014, 24, 853–858. [Google Scholar] [CrossRef]
- Marinos, V. Tunnel behaviour and support associated with the weak rock masses of flysch. J. Rock Mech. Geotech. Eng. 2014, 6, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, X.D.; Li, Y.J. Analysis of interaction between surrounding rock and support structure in high stressed soft rock roadway. Rock Soil Mech. 2013, 34, 2601–2607. [Google Scholar]
- Hudson, J.A.; Harrison, J.P.; Popescu, M.E. Engineering Rock Mechanics: An Introduction to the Principles; Elsevier Science: Amsterdam, The Netherlands, 1997; pp. 193–206. [Google Scholar]
- Ministry of Construction of PRC. Standard for Soil Test Method (GB/T 50123-1999); China Planning Press: Beijing, China, 1999.
- Nong, X.; Towhata, I. Investigation of mechanical properties of soft rock due to laboratory reproduction of physical weathering process. Soils Found 2017, 57, 267–276. [Google Scholar] [CrossRef]
- Fang, T.; Zheng, M.X.; Kou, D.H. Experimental research on Mechanics characteristics of weathering phyllium slate packing. Railw. Eng. 2007, 3, 67–69. [Google Scholar]
- You, M.Q. Effect of confining pressure on the young’s modulus of rock specimen. Chin. J. Rock Mech. Eng. 2003, 22, 53–60. [Google Scholar]
- Guo, F.L.; Zhang, D.L.; Su, J.; Niu, X.K. Experimental study of influences of confining pressures and ground water on residual strength and post–peak volumetric change of soft rock. Chin. J. Rock Mech. Eng. 2009, 28, 2644–2650. [Google Scholar]
- Mahmutoglu, Y.; Vardar, Z. Effects of inelastic volume increase on fractured rock behavior. Bull. Eng. Geol. Environ. 2003, 62, 117–121. [Google Scholar]
- Zhang, H.; Chen, L.; Zhu, Y.M.; Zhou, Z.L.; Chen, S.G. Stress Field Distribution and Deformation Law of Large Deformation Tunnel Excavation in Soft Rock Mass. Appl. Sci. 2019, 9, 865. [Google Scholar] [CrossRef]
- Niedbalski, Z.; Małkowski, P.; Majcherczyk, T. Application of the NATM method in the road tunneling works in difficult geological conditions—The Carpathian flysch. Tunn. Undergr. Space Technol. 2018, 74, 41–59. [Google Scholar] [CrossRef]
Rock Types | Weathering Degree | Unconfined Compressive Strength (MPa) | Cohesion (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
Phyllitic slate | Micro-weathering or new rock mass | 6.9~25.3 | 0.1~0.2 | 0.8~1.2 | 0.32~0.35 |
Items | Instruments | Arrangement Positions | Section |
---|---|---|---|
The strain of second lining | Embedded strain gage | Figure 8a | 3 |
The stress of steel arch | Surface strain gage | Figure 8b | 4 |
The contact pressure between rock mass and initial support | Pressure cell | Figure 8c | 1 |
Bolt stress | Bolt stress gage | Figure 8d | 5 |
Clearance convergence deformation | Convergent instrument | Figure 8e | 2, 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Chen, L.; Zhang, H.; Zhou, Z.; Chen, S. Physical and Mechanical Characteristics of Soft Rock Tunnel and the Effect of Excavation on Supporting Structure. Appl. Sci. 2019, 9, 1517. https://doi.org/10.3390/app9081517
Zhu Y, Chen L, Zhang H, Zhou Z, Chen S. Physical and Mechanical Characteristics of Soft Rock Tunnel and the Effect of Excavation on Supporting Structure. Applied Sciences. 2019; 9(8):1517. https://doi.org/10.3390/app9081517
Chicago/Turabian StyleZhu, Yimo, Liang Chen, Heng Zhang, Zelin Zhou, and Shougen Chen. 2019. "Physical and Mechanical Characteristics of Soft Rock Tunnel and the Effect of Excavation on Supporting Structure" Applied Sciences 9, no. 8: 1517. https://doi.org/10.3390/app9081517
APA StyleZhu, Y., Chen, L., Zhang, H., Zhou, Z., & Chen, S. (2019). Physical and Mechanical Characteristics of Soft Rock Tunnel and the Effect of Excavation on Supporting Structure. Applied Sciences, 9(8), 1517. https://doi.org/10.3390/app9081517