Ginger: Panacea or Consumer’s Hype?
Abstract
:1. Introduction
1.1. Ginger in History and in the Present Day
1.2. Ginger Chemistry
2. Pharmacology of Ginger
2.1. Pharmacokinetics from Oral Intake
2.2. Safety and Interactions
2.2.1. Adverse Effects
2.2.2. Bioavailability Enhancement with Ginger
2.2.3. Ginger May Lower Bioavailability of Some Substances
2.3. Biological Activity
2.3.1. Anti-Inflammatory and Analgesic Activities
2.3.2. Anti-Emetic Activity
2.3.3. Ginger in Dysmenorrhea
2.3.4. Anti-Diabetes Activity
2.3.5. Cancer Preventive Activity
2.3.6. Equivocal Activities
3. Encapsulation of Ginger
3.1. Dispersion and Micronisation
3.2. Liposomal Ginger
4. Novel Drug Delivery Technologies Based on Ginger
4.1. Ginger-Derived Nanoparticles (GDPs)
4.2. Ginger-Derived Nano-Vectors (GDNVs)
5. Closing Remarks
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active Pharmaceutical Ingredient |
GDP | Ginger-Derived nanoParticles |
GDNV | Ginger-Derived Nano Vectors |
HOMA | Homeostasis Model Assessment |
IBS | Irritable Bowel Syndrome |
IL | InterLeukin |
NAFLD | Non-Alcoholic Fatty Liver Disease |
NASA | National Aeronautics and Space Agency |
NSAID | Non-Steroid Anti-Inflammatory Drug |
RNA | RiboNucleic Acid |
WP | Whey Protein |
References
- Bode, A.M.; Dong, Z. The Amazing and Mighty Ginger. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some physico-chemical, pharmacological and toxicological properties of ginger (Zingerber officinale)—A review. Food Chem. Toxicol. 2008, 46, 409–410. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Patch, C.S.; Sullivan, D.R.; Fenech, M.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006, 185, S4–S24. [Google Scholar]
- WHO. WHO Monographs on Selected Medicinal Plants—Volume 1. WHO Essential Medicines and Health Products Information Portal; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- US Food and Drug Administration. CFR—Code of Federal Regulations, Title 21—Food and Drugs, Chapter I—Food and Drug Administation, Subchapter B—Food for Human Consumption (continued), Part 182—Substances Generally Recognized as Safe, Subpart A—General Provisions: Sec. 182.20. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=dfc2dae5c6f384d423719ba6d29c7c1b&mc=true&node=se21.3.182_120&rgn=div8 (accessed on 28 January 2019).
- Transparency Market Research. Ginger Market (Form—Fresh, Dried, Pickled, Preserved, Crystallized, and Powdered; Distribution Channel—Modern Grocery Retail, Traditional Grocery Retail, and Non-Grocery Retail; Application—Culinary, Soups and Sauces, Snacks & Convenience Food, Bakery Products, Alcoholic Beverages, Non-Alcoholic Beverages, and Chocolate and Confectionery)—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2017—2022. Available online: https://www.transparencymarketresearch.com/ginger-market.html (accessed on 28 January 2019).
- Pratap, S.R.; Gangadharappa, H.V.; Mruthunjaya, K. Ginger: A Potential Neutraceutical, An Updated Review. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1227–1238. [Google Scholar] [CrossRef]
- Schulick, P. Ginger: Common Spice and Wonder Drug, 3rd ed.; Hohm Press: Prescott, AZ, USA, 2012. [Google Scholar]
- Jolad, S.D.; Lantz, R.C.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production. Phytochemistry 2005, 66, 1614–1635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Solyom, A.M.; Timmermann, B.N.; Gang, D.R. Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, F.; Shibuya, M.; Sankawa, U. Inhibitors of Prostaglandin Biosynthesis from Ginger. Chem. Pharm. Bull. 1982, 30, 754–757. [Google Scholar] [CrossRef]
- Koh, E.M.; Kim, H.J.; Kim, S.; Choi, W.H.; Choi, Y.H.; Ryu, S.Y.; Kim, Y.S.; Koh, W.S.; Park, S.Y. Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med. 2009, 75, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, S.; Almukainzi, M.; Bou-Chacra, N.A.; Amidon, G.L.; Lee, B.-J.; Feng, J.; Kanfer, I.; Zuo, J.Z.; Wei, H.; Bolger, M.B.; et al. Provisional Biopharmaceutical Classification of Some Common Herbs Used in Western Medicine. Mol. Pharm. 2012, 9, 815–822. [Google Scholar] [CrossRef]
- Johji, Y.; Michihiko, M.; Rong, H.Q.; Hisashi, M.; Hajime, F. The Anti-Ulcer Effect in Rats of Ginger Constituents. J. Ethnopharmacol. 1988, 23, 299–304. [Google Scholar] [CrossRef]
- Priyarani, M.; Padmakumari, K.P.; Sankariyutty, B.; Lijocherian, O.; Nisha, V.M.; Raghu, K.G. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. Int. J. Food Sci. Nutr. 2011, 62, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Yonei, Y.; Ohinata, H.; Yoshida, R.; Shimizu, Y.; Yokoyama, C. Extraction of Ginger Flavor with Liquid or Supercritical Carbon Dioxide. J. Supercrit. Fluids 1995, 8, 156–161. [Google Scholar] [CrossRef]
- Salea, R.; Veriansyah, B.; Tjandrawinata, R.R. Optimization and Scale-up Process for Supercritical Fluids Extraction of Ginger Oil from Zingiber Officinale Var. Amarum. J. Supercrit. Fluids 2016, 120, 285–294. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Linares, I.B.; Mašković, P. Characterisation of Ginger Extracts Obtained by Subcritical Water. J. Supercrit. Fluids 2016, 123, 92–100. [Google Scholar] [CrossRef]
- Solladié, G.; Ziani-Chérif, C. Total Synthesis of Natural Gingerols, the Three Active Principles of Ginger. J. Org. Chem. 1993, 58, 2181–2185. [Google Scholar] [CrossRef]
- Nakazawa, T.; Ohsawa, K. Metabolism of [6]-gingerol in rats. Life Sci. 2002, 70, 2165–2175. [Google Scholar] [CrossRef]
- Mukkavilli, R.; Yang, C.; Tanwar, R.S.; Ghareeb, A.; Luthra, L.; Aneja, R. Absorption, Metabolic Stability, and Pharmacokinetics of Ginger Phytochemicals. Molecules 2017, 22, 553. [Google Scholar] [CrossRef]
- Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; Normolle, D.P.; Alrawi, S.; Feng, M.R.; Brenner, D.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1930–1936. [Google Scholar] [CrossRef]
- Hoehle, S.I.; Pfeiffer, E.; Metzler, M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol. Nutr. Food Res. 2007, 51, 932–938. [Google Scholar] [CrossRef]
- Portnoi, G.; Chng, L.-A.; Karimi-Tabesh, L.; Koren, G.; Tan, M.P.; Einarson, A. Prospective comparative study of the safety and effectiveness of ginger for the treatment of nausea and vomiting in pregnancy. Am. J. Obstet. Gynecol. 2003, 189, 1374–1377. [Google Scholar] [CrossRef]
- Heitmann, K.; Nordeng, H.; Holst, L. Safety of ginger use in pregnancy: Results from a large population-based cohort study. Eur. J. Clin. Pharmacol. 2013, 69, 269–277. [Google Scholar] [CrossRef]
- Govindarajan, V.S. Ginger-chemistry, technology, and quality evaluation: Part 2. Crit. Rev. Food Sci. Nutr. 1982, 17, 189–258. [Google Scholar] [CrossRef]
- Zick, S.M.; Turgeon, D.K.; Vareed, S.K.; Ruffin, M.T.; Litzinger, A.J.; Wright, B.D.; Alrawi, S.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer. Cancer Prev. Res. 2011, 4, 1929–1937. [Google Scholar] [CrossRef]
- Bordia, A.; Verma, S.K.; Srivastava, K.C. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot. Essent. Fatty Acids 1997, 56, 379–384. [Google Scholar] [CrossRef]
- Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2005, 59, 425–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, W.; McKavanagh, D.; McCarthy, A.L.; Bird, R.; Ried, K.; Chan, A.; Isenring, L. The Effect of Ginger (Zingiber officinale) on Platelet Aggregation: A Systematic Literature Review. PLoS ONE 2015, 10, e0141119. [Google Scholar]
- Qazi, G.N.; Tikoo, L.C.; Gupta, A.K.; Ganjoo, K.S.; Gupta, D.K.; Jaggi, B.S.; Singh, R.P.; Singh, G.; Chandan, K.B.; Suri, K.A.; et al. Bioavailability Enhancing Activity of Zingiber Officinale Linn and Its Extracts/Fractions Thereof. Patent WO2003049753A1, 19 June 2003. [Google Scholar]
- Prakash, S.; Kherde, P.; Rangari, V. Bioenhancement effect of piperine and ginger oleo resin on the bioavailability of atazanvir. Int. J. Pharm. Pharm. Sci. 2015, 7, 241–245. [Google Scholar]
- Chiang, H.-M.; Chao, P.-D.L.; Hsiu, S.-L.; Wen, K.-C.; Tsai, S.-Y.; Hou, Y.-C. Ginger Significantly Decreased the Oral Bioavailability of Cyclosporine in Rats. Am. J. Chinese Med. 2006, 34, 845–855. [Google Scholar] [CrossRef]
- Black, C.D.; O’Connor, P.J. Acute effects of dietary ginger on muscle pain induced by eccentric exercise. Phytother. Res. 2010, 24, 1620–1626. [Google Scholar] [CrossRef]
- Black, C.D.; Herring, M.P.; Hurley, D.J.; O’Connor, P.J. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J. Pain. 2010, 11, 894–903. [Google Scholar] [CrossRef]
- Young, H.-Y.; Luo, Y.-L.; Cheng, H.-Y.; Hsieh, W.-C.; Liao, J.-C.; Peng, W.-H. Analgesic and Anti-Inflammatory Activities of [6]-Gingerol. J. Ethnopharmacol. 2005, 96, 207–210. [Google Scholar] [CrossRef]
- Bliddal, H.; Rosetzsky, A.; Schlichting, P.; Weidner, M.S.; Andersen, L.A.; Ibfelt, H.-H.; Christensen, K.; Jensen, O.N.; Barslev, J. A randomized, placebo-controlled, cross-over study of ginger extracts and Ibuprofen in osteoarthritis. Osteoarth. Cartil. 2000, 8, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, M.; Khalvat, A.; Toliat, T.; Jallaei, S. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with ostheoarthritis. Arch. Iran. Med. 2005, 8, 267–271. [Google Scholar]
- Zakeri, Z.; Izadi, S.; Bari, Z.; Soltani, F.; Narouie, B.; Ghasemi-rad, M. Evaluating the effects of ginger extract on knee pain, stiffness and difficulty in patients with knee osteoarthritis. J. Med. Plant Res. 2011, 5, 3375–3379. [Google Scholar]
- Mustafa, T.; Srivastava, K.C. Ginger (Zingiber Officinale) in Migraine Headache. J. Ethnopharmacol. 1990, 29, 267–273. [Google Scholar] [CrossRef]
- Jung, H.W.; Yoon, C.-H.; Park, K.M.; Han, H.S.; Park, Y.-K. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem. Toxicol. 2009, 47, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-C.; Chang, K.-S.; Lin, C.-C. Anti-neuroinflammatory capacity of fresh Ginger is attributed mainly to 10-Gingerol. Food Chem. 2013, 141, 3183–3191. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, E.; Visser, J.; Musekiwa, A. A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr. J. 2014, 13, 20. [Google Scholar] [CrossRef]
- Fischer-Rasmussen, W.; Kjaer, S.K.; Dahl, C.; Asping, U. Ginger treatment of hyperemesis gravidarum. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991, 38, 19–24. [Google Scholar] [CrossRef]
- Basirat, Z.; Moghadamnia, A.A.; Kashifard, M.; Sarifi-Razavi, A. The effect of ginger biscuit on nausea and vomiting in early pregnancy. Acta Med. Iran. 2009, 4, 51–56. [Google Scholar]
- Chittumma, P.; Kaewkiattikun, K.; Wiriyasiriwach, B. Comparison of the effectiveness of ginger and vitamin B6 for treatment of nausea and vomiting in early pregnancy: A randomized double-blind controlled trial. J. Med. Assoc. Thai 2007, 90, 15–20. [Google Scholar] [PubMed]
- Ensiyeh, J.; Sakineh, M.A. Comparing ginger and vitamin B6 for the treatment of nausea and vomiting in pregnancy: A randomised controlled trial. Midwifery 2005, 25, 649–653. [Google Scholar] [CrossRef]
- Keating, A.; Chez, R.A. Ginger syrup as an antiemetic in early pregnancy. Altern. Ther. Health Med. 2002, 8, 89–91. [Google Scholar]
- Mohammadbeigi, R.; Shahgeibi, S.; Soufizadeh, N.; Rezaiie, M.; Farhadifar, F. Comparing the effects of ginger and metoclopramide on the treatment of Pregnancy nausea. Pak. J. Biol. Sci. 2011, 14, 817–820. [Google Scholar] [PubMed]
- Ozgoli, G.; Goli, M.; Simbar, M. Effects of ginger capsules on pregnancy, nausea, and vomiting. J. Altern. Complement. Med. 2009, 15, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Pongrojpaw, D.; Somprasit, C.; Chanthasenanont, M.D. A randomized comparison of ginger and dimenhydrinate in the treatment of nausea and vomiting in pregnancy. J. Med. Assoc. Thai 2007, 90, 1703–1709. [Google Scholar]
- Smith, C.; Crowther, C.; Willson, K.; Hotham, N.; McMillian, V. A randomized controlled trial of ginger to treat nausea and vomiting in pregnancy. Obstet. Gynecol. 2004, 103, 639–645. [Google Scholar] [CrossRef]
- Sripramote, M.; Lekhyananda, N. A randomized comparison of ginger and vitamin B6 in the treatment of nausea and vomiting of pregnancy. J. Med. Assoc. Thai 2003, 86, 846–853. [Google Scholar]
- Vutyavanich, T.; Kraisarin, T.; Ruangsri, R. Ginger for nausea and vomiting in pregnancy: Randomized, double-masked, placebo-controlled trial. Obstet. Gynecol. 2001, 97, 577–582. [Google Scholar] [CrossRef]
- Grøntved, A.; Hentzer, E. Vertigo-reducing effect of ginger root. A controlled clinical study. J. Otorhinolaryngol. Relat. Spec. 1986, 48, 282–286. [Google Scholar] [CrossRef]
- Grøntved, A.; Brask, T.; Kambskard, J.; Hentzer, E. Ginger root against seasickness: A controlled trial on the open sea. Acta otoralyngol. 1988, 105, 45–49. [Google Scholar] [CrossRef]
- Mowrey, D.B.; Clayson, D.E. Motion sickness, ginger, and psychophysics. Lancet 1982, 319, 655–657. [Google Scholar] [CrossRef]
- Lien, H.-C.; Sun, W.M.; Chen, Y.-H.; Kim, H.; Hasler, W.; Owyang, C. Effects of ginger on motion sickness and gastric slowwave dysrhythmias induced by circular vection. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G481–G489. [Google Scholar] [CrossRef]
- Stewart, J.J.; Wood, M.J.; Wood, C.D.; Mims, M.E. Effects of ginger on motion sickness susceptibility and gastric function. Pharmacology 1991, 42, 111–120. [Google Scholar] [CrossRef]
- Bone, M.E.; Wilkinson, D.J.; Young, J.R.; McNeil, J.; Charlton, S. Ginger root—A new aniemetic: The effect of ginger root on postoperative nausea and vomiting after gynaecological surgery. Anesthesia 1990, 45, 669–671. [Google Scholar] [CrossRef]
- Phillips, S.; Ruggier, R.; Hutchinson, S.E. Zingiber officinale (ginger)—An antiemetic for day case surgery. Anaesthesia 1993, 48, 715–717. [Google Scholar] [CrossRef]
- Ryan, J.L.; Heckler, C.E.; Roscoe, J.A.; Dakhil, S.R.; Kirshner, J.; Flynn, P.J.; Hickok, J.T.; Morrow, G.R. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: A URCC CCOP study of 576 patients. Support Care Can. 2012, 20, 1479–1489. [Google Scholar] [CrossRef]
- Lua, P.L.; Salihah, N.; Mazlan, N. Effects of Inhaled Ginger Aromatherapy on Chemotherapy-Induced Nausea and Vomiting and Health-Related Quality of Life in Women with Breast Cancer. Complement. Med. 2015, 23, 396–404. [Google Scholar] [CrossRef]
- Chen, C.H.; Barrett, B.; Kwekkeboom, K.L. Efficacy of Oral Ginger (Zingiber officinale) for Dysmenorrhea: A Systematic Review and Meta-Analysis. Evid. Based Compl. Altern. Med. 2006, 2006, 6295737. [Google Scholar] [CrossRef]
- Rahnama, P.; Montazeri, A.; Huseini, H.F.; Kianbakht, S.; Naseri, M. Effect of Zingiber officinale R. Rhizomes (ginger) on pain relief in primary dysmenorrhea: A placebo randomized trial. BMC Complement. Altern. Med. 2012, 12, 92. [Google Scholar] [CrossRef]
- Shirvani, M.A.; Motahari-Tabari, N.; Alipour, A. The effect of mefenamic acid and ginger on pain relief in primary dysmenorrhea: A randomized clinical trial. Arch. Gynecol. Obstet. 2015, 291, 1277–1281. [Google Scholar] [CrossRef]
- Ozgoli, G.; Goli, M.; Moattar, F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J. Altern. Complement. Med. 2009, 15, 129–132. [Google Scholar] [CrossRef]
- Halder, A. Effect of progressivemuscle relaxation versus intake of ginger powder on dysmenorrhoea amongst the nursing students in Pune. Nurs. J. India 2012, 103, 152–156. [Google Scholar]
- Mahluji, S.; Ostadrahimi, A.; Mobasseri, M.; Attari, V.E.; Payahoo, L. Anti-inflammatory effects of Zingiber officinale in type 2 diabetic patients. Adv. Pharm. Bull. 2013, 3, 273. [Google Scholar]
- Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.F.; Djalali, M. The effect of Ginger consumption on some cardiovascular risk factors in patients with type 2 diabetes mellitus. Razi J. Med. Sci. 2014, 21, 1–12. [Google Scholar]
- Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.F.; Djalali, M. The effect of Ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr. 2014, 65, 515–520. [Google Scholar] [CrossRef]
- Andallu, B.; Radhika, B.; Suryakantham, V. Effect of Aswagandha, Ginger and Mulberry on Hyperglycemia and Hyperlipidemia. Plant Foods Hum. Nutr. 2004, 58, 1–7. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Talaei, B.; Jalali, B.A.; Najarzadeh, A.; Mozayan, M.R. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement. Ther. Med. 2014, 22, 9–16. [Google Scholar] [CrossRef]
- Atashak, S.; Piri, M.; Jafari, A.; Azarbayjani, M.A. Effects of 10 week resistance training and ginger consumption on C-reactive protein and some cardiovascular risk factors in obese men. Iranian Soc. Physiol. Pharmacol. 2010, 14, 318–328. [Google Scholar]
- Imani, H.; Tabibi, H.; Najafi, I.; Atabak, S.; Hedayati, M.; Rahmani, L. Effects of ginger on serum glucose, advanced glycation end products, and inflammation in peritoneal dialysis patients. Nutrition 2015, 31, 703–707. [Google Scholar] [CrossRef]
- Citronberg, J.; Bostick, R.; Ahearn, T.; Turgeon, D.K.; Ruffin, M.T.; Djuric, Z.; Sen, A.; Brenner, D.E.; Zick, S.M. Effects of Ginger Supplementation on Cell Cycle Biomarkers in the Normal-Appearing Colonic Mucosa: Results from a Pilot, Randomized, Controlled Trial. Cancer Prev. Res. 2013, 6, 271–281. [Google Scholar] [CrossRef]
- Jiang, Y.; Turgeon, D.K.; Wright, B.D.; Sidahmed, E.; Ruffin, M.T.; Brenner, D.E.; Sen, A.; Zick, S.M. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer. Eur. J. Cancer Prev. 2013, 22, 455–460. [Google Scholar] [CrossRef]
- Van Tilburg, M.A.; Palsson, O.S.; Ringel, Y.; Whitehead, W.E. Is ginger effective for the treatment of irritable bowel syndrome? A double blind randomized controlled pilot trial. Complement. Therap. Med. 2014, 22, 17–20. [Google Scholar] [CrossRef]
- Rahimlou, M.; Yari, Z.; Hekmatdoost, A.; Alavian, S.M.; Keshavarz, S.A. Ginger supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Hepatitis Mon. 2016, 16, e34897. [Google Scholar] [CrossRef]
- Ebrahimzadeh Attari, V.; Asghari Jafarabadi, M.; Zemestani, M.; Ostadrahimi, A. Effect of Zingiber officinale supplementation on obesity management with respect to the uncoupling protein 1-3826A>G and β3-adrenergic receptor Trp64Arg polymorphism. Phytother. Res. 2015, 29, 1032–1039. [Google Scholar] [CrossRef]
- Ebrahimzadeh Attari, V.; Ostadrahimi, A.; Asghari Jafarabadi, M.; Mehralizadeh, S.; Mahluji, S. Changes of serum adipocytokines and bodyweight following Zingiber officinale supplementation in obese women: A RCT. Eur. J. Nutr. 2016, 55, 2129–2136. [Google Scholar] [CrossRef]
- Fernandes, R.V.B.; Botrel, D.A.; Silva, E.K.; Pereira, C.G.; do Carmo, E.L.; Dessimoni, A.L.A.; Borges, S.V. Microencapsulated ginger oil properties: Influence of operating parameters. Drying Technol. 2017, 35, 1098–1107. [Google Scholar] [CrossRef]
- Toure, A.; Xiaoming, Z.; Jia, C.-S.; Zhijian, D. Microencapsulation and Oxidative Stability of Ginger Essential Oil in Maltodextrin/Whey Protein Isolate (MD/WPI). Int. J. Dairy Sci. 2007, 2, 387–392. [Google Scholar]
- Jayanudin; Rochmadi; Fahrurrozi, M.; Wirawan, S.K. Microencapsulation Technology of Ginger Oleoresin with Chitosan as Wall Material: A review. J. Appl. Pharm. Sci. 2016, 12, 209–223. [Google Scholar] [CrossRef]
- Jayanudin; Rochmadi. Encapsulation of red ginger oleoresin (Zingiber officinale var rubrum) with chitosan as wall material. Int. J. Pharm. Pharm. Sci. 2017, 9, 29–34. [Google Scholar]
- Jayanudin; Rochmadi; Wiratni; Yulvianti, M.; Barleany, D.R.; Ernayati, W. Encapsulation Red Ginger Oleoresin (Zingiber officinale var. Rubrum) with Chitosan-alginate as Wall Material Using Spray Drying. Res. J. Appl. Sci. Eng. Technol. 2015, 10, 1370–1378. [Google Scholar] [CrossRef]
- Tanaka, K.; Arita, M.; Sakurai, H.; Ono, N.; Tezuka, Y. Analysis of Chemical Properties of Edible and Medicinal Ginger by Metabolomics Approach. BioMed Res. Int. 2015, 2015, 671058. [Google Scholar] [CrossRef]
- Purathrive. Could Ginger Be Used Medicinally? purathrive.com, 2019. Available online: https://purathrive.com/could-ginger-be-used-medicinally (accessed on 12 March 2019).
- Synchro. Gold (Lemon ginger). besynchro.com, 2019. Available online: https://besynchro.com/collections/shop/products/synchro-gold-lemon-ginger (accessed on 12 March 2019).
- Ganji, S.; Sayyed-Alangi, S.Z. Encapsulation of ginger ethanolic extract in nanoliposome and evaluation of its antioxidant activity on sunflower oil. Chem. Pap. 2017, 71, 1781–1789. [Google Scholar] [CrossRef]
- Baskar, V.; Selvakumar, K.; Madhan, R.; Srinivasan, G.; Muralidharan, M. Study on improving bioavailability ratio of anti-inflammatory compound from ginger through nano transdermal delivery. Asian J. Pharm. Clin. Res. 2012, 5, 241–246. [Google Scholar]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; et al. Grape exosomelike nanoparticles induce intestinal stem cells and protect mice from dss-induced colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef]
- Wang, B.; Zhuang, X.; Deng, Z.B.; Jiang, H.; Mu, J.; Wang, Q.; Xiang, X.; Guo, H.; Zhang, L.; Dryden, G.; et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol. Ther. 2014, 22, 522–534. [Google Scholar] [CrossRef]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Han, M.K.; Collins, J.F.; Merlin, D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017, 12, 1927–1943. [Google Scholar] [CrossRef]
- Zhuang, X.; Deng, Z.B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.; Merlin, D. Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol. Ther. 2016, 24, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
Component | Dose (mg) | Cmax (μg/mL) | AUC (μg·min·mL−1) | tmax (min) | t1/2β (min) |
---|---|---|---|---|---|
6-gingerol, total | 1000 | 0.4 ± 0.2 | 12.6 ± 6.4 | 55.0 ± 7.7 | — |
1500 | 1.69 ± 2.31 | 75.6 ± 110.3 | 60.0 ± 0.0 | — | |
2000 | 0.85 ± 0.43 | 65.6 ± 44.4 | 65.5 ± 22.6 | 110.0 ± 34.9 | |
6-gingerol glucoronide | 1000 | 0.16 ± 0.15 | — | — | — |
1500 | 0.62 ± 0.62 | — | — | — | |
2000 | 0.62 ± 0.56 | — | — | — | |
6-gingerol sulphate | 1000 | 0.02 ± 0.03 | — | — | — |
1500 | 0.04 ± 0.04 | — | — | — | |
2000 | 0.33 ± 0.41 | — | — | — | |
8-gingerol, total | 1000 | 0.1 ± 0.1 | 2.1 ± 2.2 | 52.5 ± 8.7 | — |
1500 | 0.1 ± 0.1 | 2.6 ± 2.0 | 60.0 ± 0.0 | — | |
2000 | 0.23 ± 0.16 | 18.1 ± 20.3 | 73.1 ± 29.4 | 113.5 ± 41.1 | |
10-gingerol, total | 1000 | 0.1 ± 0.1 | 2.9 ± 3.2 | 60.0 ± 0.0 | — |
1500 | 0.1 ± 0.02 | 7.7 ± 5.3 | 80.0 ± 34.6 | — | |
2000 | 0.53 ± 0.4 | 50.1 ± 49.3 | 75.0 ± 27.8 | 128.7 ± 38.8 | |
6-shogaol, total | 1000 | 0.1 ± 0.1 | 0.8 ± 1.5 | 55.0 ± 8.7 | — |
1500 | 0.4 ± 0.08 | 1.6 ± 2.8 | 60.0 ± 0.0 | — | |
2000 | 0.15 ± 0.12 | 10.9 ± 13.0 | 65.6 ± 22.6 | 120.4 ± 42.0 |
Compound | Enhancement in Bioavailability (%) |
---|---|
Fluoroquinolones | |
Ciprofloxacin | 68 |
P-floxacin | 53 |
O-floxacin | 49 |
Macrolides | |
Erythromycin | 68 |
Roxythromycin | 72 |
Azythromycin | 78 |
Cephalosporins | |
Cefalexin | 75 |
Cefadroxil | 68 |
Penicillins | |
Amoxycillin | 80 |
Cloxacillin | 76 |
Aminoglycosides | |
Kanamycin | 65 |
Antimycobacterium agents | |
Rifampicin | 65 |
Dapsone | 46 |
Etionamide | 56 |
Cycloserine | 71 |
Antifungals | |
Fluconazole | 120 |
Ketoconazole | 125 |
Antivirals | |
Acyclovir | 82 |
Zidovudine | 105 |
Antiulceratives | |
Ranitidine | 147 |
Cimetidine | 98 |
Benzodiazepines | |
Alprazolam | 76 |
Anti-hypertension agents | |
Propanolol | 76 |
Lisoprinil | 76 |
Amlodipine | 68 |
Steroid anti-inflammatories | |
Dexamethasone | 76 |
Betamethasone | 75 |
Non-steroid anti-inflammatories | |
Diclofenac | 90 |
Piroxicam | 86 |
Nimesulide | 144 |
Immunosupressants | |
Cyclosporin A | 116 |
Tacrolimus | 75 |
Antimetabolites and antitumorals | |
Methotrexate | 87 |
Doxorubicin | 72 |
5-Fluorouracil | 110 |
Cisplatin | 56 |
Vitamins and antioxidants | |
Vitamin A | 30 |
Beta-carotene | 36 |
Vitamin E | 27 |
Vitamin C | 25 |
Essential aminoacids | |
Leucine | 17 |
Isoleucine | 31 |
Methionine | 25 |
Lysine | 15 |
Valine | 25 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Braga, S. Ginger: Panacea or Consumer’s Hype? Appl. Sci. 2019, 9, 1570. https://doi.org/10.3390/app9081570
Santos Braga S. Ginger: Panacea or Consumer’s Hype? Applied Sciences. 2019; 9(8):1570. https://doi.org/10.3390/app9081570
Chicago/Turabian StyleSantos Braga, Susana. 2019. "Ginger: Panacea or Consumer’s Hype?" Applied Sciences 9, no. 8: 1570. https://doi.org/10.3390/app9081570
APA StyleSantos Braga, S. (2019). Ginger: Panacea or Consumer’s Hype? Applied Sciences, 9(8), 1570. https://doi.org/10.3390/app9081570